Project

General

Profile

New Model #4851 » th8600.py

Andy Knitt, 08/04/2023 06:04 PM

 
# Version 1.0 for TYT-TH8600
# Initial radio protocol decode, channels and memory layout, basic settings
# by Andy Knitt <andyknitt@gmail.com>, Summer 2023
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.

import struct
import logging
import math
from chirp import chirp_common, directory, memmap
from chirp import bitwise, errors, util
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettings

LOG = logging.getLogger(__name__)

MEM_FORMAT = """
struct chns {
ul32 rxfreq;
ul32 txfreq;
ul16 rxtone;
ul16 txtone;

u8 power:2 // High=00,Mid=01,Low=10
mode:2 // WFM=00, FM=01, NFM=10
b_lock:2 // off=00, sub=01, carrier=10
REV:1
TxInh:1;
u8 sqlmode:3 // SQ=000, CT=001, Tone=010,
//CT or Tone=011, CTC and Tone=100
signal:2 // off=00, dtmf=01, 2-tone=10, 5-tone=11
display: 1
talkoff: 1
TBD: 1;
u8 fivetonepttid: 2 //off=00, begin=01,end=10,both=11
dtmfpttid: 2 //off=00, begin=01,end=10,both=11
tuning_step: 4; //
u8 name[6];
};

struct chname {
u8 extra_name[10];
};

#seekto 0x0000;
struct chns chan_mem[200];
struct chns scanlimits[4];
struct chns vfos[6];

#seekto 0x1960;
struct chname chan_name[200];

#seekto 0x1160;
struct {
u8 introScreen1[12]; // 0x1160 *Intro Screen Line 1(truncated to 12 alpha
// text characters)
u8 unk_bit9 : 1, // 0x116C
subDisplay : 2, // 0b00 = OFF; 0b01 = frequency; 0b10 = voltage
unk_bit8 : 1, //
sqlLevel : 4; // *OFF, 1-9
u8 beep : 1, // 0x116D *OFF, On
burstFreq : 2, // 1750,2100,1000,1450 Hz tone burst frequency
unkstr4: 4, //
txChSelect : 1; // *Last CH, Main CH
u8 unk_bit7 : 1, // 0x116E
autoPowOff : 2, // OFF, 30Min, 1HR, 2HR
tot : 5; // OFF, time in minutes (1 to 30)
u8 pttRelease: 2, // 0x116F OFF, Begin, After, Both
unk_bit6: 2, //
sqlTailElim: 2, // OFF, Frequency, No Frequency
disableReset:1, // NO, YES
menuOperation:1; // NO, YES
u8 scanResumeTime : 2, // 0x1170 2S, 5S, 10S, 15S
disMode : 2, // Frequency, Channel, Name
scanType: 2, // Time operated, Carrier operated, Se
ledMode: 2; // On, 5 second, 10 second
u8 unky; // 0x1171
u8 usePowerOnPw : 1, // 0x1172 NO, YES
elimTailNoTone: 1, // NO, YES
unk6 : 6; //
u8 unk; // 0x1173
u8 unk_bit5 : 1, // 0x1174
mzKeyFunc : 3, // A/B, Low, Monitor, Scan, Tone, M/V, MHz, Mute
unk_bit4 : 1, //
lowKeyFunc : 3; // A/B, Low, Monitor, Scan, Tone, M/V, MHz, Mute
u8 unk_bit3 : 1, // 0x1175
vmKeyFunc : 3, // A/B, Low, Monitor, Scan, Tone, M/V, MHz, Mute
unk_bit2 : 1, //
ctKeyFunc : 3; // A/B, Low, Monitor,
// Scan, Tone, M/V, MHz, Mute
u8 abKeyFunc : 3, // 0x1176 A/B, Low, Monitor,
// Scan, Tone, M/V, MHz, Mute
unk_bit1 : 1, //
volume : 4; // 0 to 15
u8 unk3 : 3, // 0x1177
introScreen : 2, // OFF, Picture, Character String
unk_bits : 3; //
u8 unk4; // 0x1178
u8 unk5; // 0x1179
u8 powerOnPw[6]; // 0x117A 6 ASCII characters
} basicsettings;

#seekto 0x1180;
struct {
u8 bitmap[26]; // one bit for each channel marked in use
} chan_avail;

#seekto 0x11A0;
struct {
u8 bitmap[26]; // one bit for each channel; 0 = skip; 1 = dont skip
} chan_skip;

#seekto 0x1680;
ul32 rx_freq_limit_low_vhf;
ul32 rx_freq_limit_high_vhf;
ul32 tx_freq_limit_low_vhf;
ul32 tx_freq_limit_high_vhf;
ul32 rx_freq_limit_low_220; //not supported by radio - always 0xFFFFFFFF
ul32 rx_freq_limit_high_220; //not supported by radio - always 0xFFFFFFFF
ul32 tx_freq_limit_low_220; //not supported by radio - always 0xFFFFFFFF
ul32 tx_freq_limit_high_220; //not supported by radio - always 0xFFFFFFFF
ul32 rx_freq_limit_low_uhf;
ul32 rx_freq_limit_high_uhf;
ul32 tx_freq_limit_low_uhf;
ul32 tx_freq_limit_high_uhf;

#seekto 0x1940;
struct {
u8 introLine1[16]; // 16 ASCII characters
u8 introLine2[16]; // 16 ASCII characters
} intro_lines;
"""

MEM_SIZE = 0x2400
BLOCK_SIZE = 0x20
STIMEOUT = 2
BAUDRATE = 9600

# Channel power: 3 levels
POWER_LEVELS = [chirp_common.PowerLevel("High", watts=25.00),
chirp_common.PowerLevel("Mid", watts=10.00),
chirp_common.PowerLevel("Low", watts=5.00)]
B_LOCK_LIST = ["OFF", "Sub", "Carrier"]
OPTSIG_LIST = ["OFF", "DTMF", "2TONE", "5TONE"]
PTTID_LIST = ["Off", "BOT", "EOT", "Both"]
STEPS = [2.5, 5.0, 6.25, 7.5, 8.33, 10.0, 12.5, 15.0, 20.0, 25.0, 30.0, 50.0]
LIST_STEPS = [str(x) for x in STEPS]
# In the context of SQL_MODES, 'Tone' refers to 2tone, 5tone, or DTMF
# signalling while "CT" refers to CTCSS and DTCS
SQL_MODES = ["SQ", "CT", "Tone", "CT or Tone", "CT and Tone"]
SPECIAL_CHANS = ("L1", "U1",
"L2", "U2",
"VFOA_VHF", "VFOA_UHF",
"VFOB_VHF", "VFOB_UHF")


def _clean_buffer(radio):
radio.pipe.timeout = 0.005
junk = radio.pipe.read(256)
radio.pipe.timeout = STIMEOUT
if junk:
LOG.debug("Got %i bytes of junk before starting" % len(junk))


def _rawrecv(radio, amount):
"""Raw read from the radio device"""
data = ""
try:
data = radio.pipe.read(amount)
except Exception:
_exit_program_mode(radio)
msg = "Generic error reading data from radio; check your cable."
raise errors.RadioError(msg)

if len(data) != amount:
_exit_program_mode(radio)
msg = "Error reading from radio: not the amount of data we want."
raise errors.RadioError(msg)

return data


def _rawsend(radio, data):
"""Raw send to the radio device"""
try:
radio.pipe.write(data)
except Exception:
raise errors.RadioError("Error sending data to radio")


def _make_read_frame(addr, length):
frame = b"\xFE\xFE\xEE\xEF\xEB"
"""Pack the info in the header format"""
frame += bytes(f'{addr:X}'.zfill(4), 'utf-8')
frame += bytes(f'{length:X}'.zfill(2), 'utf-8')
frame += b"\xFD"
# Return the data
return frame


def _make_write_frame(addr, length, data=""):
frame = b"\xFE\xFE\xEE\xEF\xE4"
"""Pack the info in the header format"""
output = struct.pack(">HB", addr, length)
# Add the data if set
if len(data) != 0:
output += data
# Convert to ASCII
converted_data = b''
for b in output:
converted_data += bytes(f'{b:X}'.zfill(2), 'utf-8')
frame += converted_data
"""Unlike other TYT models, the frame header is
not included in the checksum calc"""
cs_byte = _calculate_checksum(data)
# convert checksum to ASCII
converted_checksum = bytes(f'{cs_byte[0]:X}'.zfill(2), 'utf-8')
frame += converted_checksum
frame += b"\xFD"
# Return the data
return frame


def _calculate_checksum(data):
num = 0
for x in range(0, len(data)):
num = (num + data[x]) % 256

if num == 0:
return bytes([0])

return bytes([256 - num])


def _recv(radio, addr, length):
"""Get data from the radio """

data = _rawrecv(radio, length)

# DEBUG
LOG.info("Response:")
LOG.debug(util.hexprint(data))

return data


def _do_ident(radio):
"""Put the radio in PROGRAM mode & identify it"""
radio.pipe.baudrate = BAUDRATE
radio.pipe.parity = "N"
radio.pipe.timeout = STIMEOUT

# Flush input buffer
_clean_buffer(radio)

# Ident radio
magic = radio._magic0
_rawsend(radio, magic)
ack = _rawrecv(radio, 36)
if not ack.startswith(radio._fingerprint) or not ack.endswith(b"\xFD"):
_exit_program_mode(radio)
if ack:
LOG.debug(repr(ack))
raise errors.RadioError("Radio did not respond as expected (A)")

return True


def _exit_program_mode(radio):
# This may be the last part of a read
magic = radio._magic5
_rawsend(radio, magic)
_clean_buffer(radio)


def _download(radio):
"""Get the memory map"""

# Put radio in program mode and identify it
_do_ident(radio)

# Enter read mode
magic = radio._magic2
_rawsend(radio, magic)
ack = _rawrecv(radio, 7)
if ack != b"\xFE\xFE\xEF\xEE\xE6\x00\xFD":
_exit_program_mode(radio)
if ack:
LOG.debug(repr(ack))
raise errors.RadioError("Radio did not respond to enter read mode")

# UI progress
status = chirp_common.Status()
status.cur = 0
status.max = MEM_SIZE // BLOCK_SIZE
status.msg = "Cloning from radio..."
radio.status_fn(status)

data = b""
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
frame = _make_read_frame(addr, BLOCK_SIZE)
# DEBUG
LOG.debug("Frame=" + util.hexprint(frame))

# Sending the read request
_rawsend(radio, frame)

# Now we read data
d = _recv(radio, addr, BLOCK_SIZE*2 + 14)

LOG.debug("Response Data= " + util.hexprint(d))

if not d.startswith(b"\xFE\xFE\xEF\xEE\xE4"):
LOG.warning("Incorrect start")
if not d.endswith(b"\xFD"):
LOG.warning("Incorrect end")
# validate the block data with checksum
# HEADER IS NOT INCLUDED IN CHECKSUM CALC, UNLIKE OTHER TYT MODELS
protected_data = d[5:-4]
received_checksum = d[-4:-2]
# unlike some other TYT models, the data protected by checksum
# is sent over the wire in ASCII format. Need to convert ASCII
# to integers to perform the checksum calculation, which uses
# the same algorithm as other TYT models.
converted_data = b''
for i in range(0, len(protected_data), 2):
int_data = int(protected_data[i:i+2].decode('utf-8'), 16)
converted_data += int_data.to_bytes(1, 'big')
cs_byte = _calculate_checksum(converted_data)
# checksum is sent over the wire as ASCII characters, so convert
# the calculated value before checking against what was received
converted_checksum = bytes(f'{cs_byte[0]:X}'.zfill(2), 'utf-8')
if received_checksum != converted_checksum:
LOG.warning("Incorrect checksum received")
# Strip out header, addr, length, checksum,
# eof and then aggregate the remaining data
ascii_data = d[11:-3]
if len(ascii_data) % 2 != 0:
LOG.error("Invalid data length")
converted_data = b''
for i in range(0, len(ascii_data), 2):
LOG.debug(ascii_data[i] + ascii_data[i+1])
int_data = int(ascii_data[i:i+2].decode('utf-8'), 16)
converted_data += int_data.to_bytes(1, 'big')
data += converted_data

# UI Update
status.cur = addr // BLOCK_SIZE
status.msg = "Cloning from radio..."
radio.status_fn(status)

_exit_program_mode(radio)

return data


def _upload(radio):
"""Upload procedure"""
# Put radio in program mode and identify it
_do_ident(radio)

magic = radio._magic3
_rawsend(radio, magic)
ack = _rawrecv(radio, 7)
if ack != b"\xFE\xFE\xEF\xEE\xE6\x00\xFD":
_exit_program_mode(radio)
if ack:
LOG.debug(repr(ack))
raise errors.RadioError("Radio did not respond to enter write mode")

# UI progress
status = chirp_common.Status()
status.cur = 0
status.max = MEM_SIZE // BLOCK_SIZE
status.msg = "Cloning to radio..."
radio.status_fn(status)

# The fun starts here
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
# Official programmer skips writing these memory locations
if addr >= 0x1680 and addr < 0x1940:
continue

# Sending the data
data = radio.get_mmap()[addr:addr + BLOCK_SIZE]

frame = _make_write_frame(addr, BLOCK_SIZE, data)
LOG.warning("Frame:%s:" % util.hexprint(frame))
_rawsend(radio, frame)

ack = _rawrecv(radio, 7)
LOG.debug("Response Data= " + util.hexprint(ack))

if not ack.startswith(b"\xFE\xFE\xEF\xEE\xE6\x00\xFD"):
LOG.warning("Unexpected response")
_exit_program_mode(radio)
msg = "Bad ack writing block 0x%04x" % addr
raise errors.RadioError(msg)

# UI Update
status.cur = addr // BLOCK_SIZE
status.msg = "Cloning to radio..."
radio.status_fn(status)

_exit_program_mode(radio)


def _do_map(chn, sclr, mary):
"""Set or Clear the chn (1-200) bit in mary[] word array map"""
# chn is 1-based channel, sclr:1 = set, 0= = clear, 2= return state
# mary[] is u8 array, but the map is by nibbles
ndx = int(math.floor((chn - 1) / 8))
bv = (chn - 1) % 8
msk = 1 << bv
mapbit = sclr
if sclr == 1: # Set the bit
mary[ndx] = mary[ndx] | msk
elif sclr == 0: # clear
mary[ndx] = mary[ndx] & (~ msk) # ~ is complement
else: # return current bit state
mapbit = 0
if (mary[ndx] & msk) > 0:
mapbit = 1
return mapbit


@directory.register
class TH8600Radio(chirp_common.CloneModeRadio):
"""TYT TH8600 Radio"""

VENDOR = "TYT"
MODEL = "TH-8600"
NEEDS_COMPAT_SERIAL = False
MODES = ['WFM', 'FM', 'NFM']
sql_modeS = ("", "Tone", "TSQL", "DTCS", "Cross")
TONES = chirp_common.TONES
DTCS_CODES = chirp_common.DTCS_CODES
NAME_LENGTH = 6
DTMF_CHARS = list("0123456789ABCD*#")
# 136-174, 400-480
VALID_BANDS = [(136000000, 174000001), (400000000, 480000001)]
# Valid chars on the LCD
VALID_CHARS = chirp_common.CHARSET_ALPHANUMERIC + \
"`!\"#$%&'()*+,-./:;<=>?@[]^_"

_magic0 = b"\xFE\xFE\xEE\xEF\xE0\x26\x98\x00\x00\xFD"
_magic2 = b"\xFE\xFE\xEE\xEF\xE2\x26\x98\x00\x00\xFD"
_magic3 = b"\xFE\xFE\xEE\xEF\xE3\x26\x98\x00\x00\xFD"
_magic5 = b"\xFE\xFE\xEE\xEF\xE5\x26\x98\x00\x00\xFD"
_fingerprint = b"\xFE\xFE\xEF\xEE\xE1\x26\x98\x00\x00\x31\x31\x31\x31" \
b"\x31\x31\x31\x31\x31\x31\x31\x31\x31\x31\x31\x31\x31" \
b"\x31\x31\x31\x34\x33\x34\x45"

@classmethod
def match_model(cls, filedata, filename):
# This radio has always been post-metadata, so never do
# old-school detection
return False

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.info = \
(cls.VENDOR + ' ' + cls.MODEL + '\n')

rp.pre_download = _(
"This is an early stage beta driver\n")
rp.pre_upload = _(
"This is an early stage beta driver - upload at your own risk\n")
return rp

def get_features(self):
rf = chirp_common.RadioFeatures()
rf.has_settings = True
rf.has_bank = False
rf.has_bank_index = False
rf.has_bank_names = False
rf.has_comment = False
rf.has_tuning_step = True
rf.valid_tuning_steps = STEPS
rf.can_odd_split = True
rf.has_name = True
rf.has_offset = True
rf.has_mode = True
rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = True
rf.has_ctone = True
rf.has_cross = True
rf.has_sub_devices = False
rf.has_infinite_number = False
rf.has_nostep_tuning = False
rf.has_variable_power = False
rf.valid_name_length = self.NAME_LENGTH
rf.valid_modes = self.MODES
rf.valid_characters = self.VALID_CHARS
rf.valid_duplexes = ["", "-", "+", "split", "off"]
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = ["Tone->Tone", "DTCS->", "->DTCS",
"Tone->DTCS", "DTCS->Tone", "->Tone",
"DTCS->DTCS"]
rf.valid_skips = []
rf.valid_power_levels = POWER_LEVELS
rf.valid_dtcs_codes = chirp_common.DTCS_CODES
rf.valid_bands = self.VALID_BANDS
rf.valid_special_chans = SPECIAL_CHANS
rf.memory_bounds = (0, 199)
rf.valid_skips = ["", "S"]
return rf

def sync_in(self):
"""Download from radio"""
try:
data = _download(self)
except errors.RadioError:
# Pass through any real errors we raise
raise
except Exception:
# If anything unexpected happens, make sure we raise
# a RadioError and log the problem
LOG.exception('Unexpected error during download')
raise errors.RadioError('Unexpected error communicating '
'with the radio')
self._mmap = memmap.MemoryMapBytes(data)
self.process_mmap()

def sync_out(self):
"""Upload to radio"""

try:
_upload(self)
except Exception:
# If anything unexpected happens, make sure we raise
# a RadioError and log the problem
LOG.exception('Unexpected error during upload')
raise errors.RadioError('Unexpected error communicating '
'with the radio')

def process_mmap(self):
"""Process the mem map into the mem object"""
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)
'''
def process_mmap(self):
self._memobj = bitwise.parse(
TH8600_MEM_FORMAT %
(self._mmap_offset, self._scanlimits_offset, self._settings_offset,
self._chan_active_offset, self._info_offset), self._mmap)
'''
def get_raw_memory(self, number):
return repr(self._memobj.memory[number])

def set_memory(self, memory):
"""A value in a UI column for chan 'number' has been modified."""
# update all raw channel memory values (_mem) from UI (mem)
if memory.number >= 200 and memory.number < 204:
_mem = self._memobj.scanlimits[memory.number-200]
_name = None
elif memory.number >= 204:
_mem = self._memobj.vfos[memory.number-204]
_name = None
else:
_mem = self._memobj.chan_mem[memory.number]
_name = self._memobj.chan_name[memory.number]
if memory.empty:
_do_map(memory.number, 0, self._memobj.chan_avail.bitmap)
return
else:
_do_map(memory.number, 1, self._memobj.chan_avail.bitmap)

if memory.skip == "":
_do_map(memory.number, 1, self._memobj.chan_skip.bitmap)
else:
_do_map(memory.number, 0, self._memobj.chan_skip.bitmap)

return self._set_memory(memory, _mem, _name)

def get_memory(self, number):

mem = chirp_common.Memory()
mem.number = number
# Get a low-level memory object mapped to the image
if isinstance(number, str) or number >= 200:
# mem.number = -10 + SPECIAL_CHANS.index(number)
if number == 'L1' or number == 200:
_mem = self._memobj.scanlimits[0]
_name = None
mem.number = 200
mem.extd_number = 'L1'
elif number == 'U1' or number == 201:
_mem = self._memobj.scanlimits[1]
_name = None
mem.number = 201
mem.extd_number = 'U1'
elif number == 'L2' or number == 202:
_mem = self._memobj.scanlimits[2]
_name = None
mem.number = 202
mem.extd_number = 'L2'
elif number == 'U2' or number == 203:
_mem = self._memobj.scanlimits[3]
_name = None
mem.number = 203
mem.extd_number = 'U2'
elif number == 'VFOA_VHF' or number == 204:
_mem = self._memobj.vfos[0]
mem.number = 204
mem.extd_number = 'VFOA_VHF'
_name = None
elif number == 'VFOA_220' or number == 205:
_mem = self._memobj.vfos[1]
_name = None
mem.number = 205
elif number == 'VFOA_UHF' or number == 206:
_mem = self._memobj.vfos[2]
mem.number = 206
mem.extd_number = 'VFOA_UHF'
_name = None
elif number == 'VFOB_VHF' or number == 207:
_mem = self._memobj.vfos[3]
mem.number = 207
mem.extd_number = 'VFOB_VHF'
_name = None
mem.extd_number = 'VFOA_220'
elif number == 'VFOB_220' or number == 208:
_mem = self._memobj.vfos[4]
_name = None
mem.number = 208
mem.extd_number = 'VFOB_220'
elif number == 'VFOB_UHF' or number == 209:
_mem = self._memobj.vfos[5]
mem.number = 209
mem.extd_number = 'VFOB_UHF'
_name = None
else:
mem.number = number # Set the memory number
_mem = self._memobj.chan_mem[number]
_name = self._memobj.chan_name[number]
# Determine if channel is empty

if _do_map(mem.number, 2, self._memobj.chan_avail.bitmap) == 0:
mem.empty = True
return mem

if _do_map(mem.number, 2, self._memobj.chan_skip.bitmap) == 1:
mem.skip = ""
else:
mem.skip = "S"

return self._get_memory(mem, _mem, _name)

def _get_memory(self, mem, _mem, _name):
"""Convert raw channel memory data into UI columns"""
mem.extra = RadioSettingGroup("extra", "Extra")

mem.empty = False
# This function process both 'normal' and Freq up/down' entries
mem.freq = int(_mem.rxfreq) * 10

if _mem.txfreq == 0xFFFFFFFF:
# TX freq not set
mem.duplex = "off"
mem.offset = 0
elif abs(int(_mem.rxfreq) * 10 - int(_mem.txfreq) * 10) > 25000000:
mem.duplex = "split"
mem.offset = int(_mem.txfreq) * 10
elif int(_mem.rxfreq) == int(_mem.txfreq):
mem.duplex = ""
mem.offset = 0
else:
mem.duplex = int(_mem.rxfreq) > int(_mem.txfreq) \
and "-" or "+"
mem.offset = abs(int(_mem.rxfreq) - int(_mem.txfreq)) * 10

mem.name = ""
for i in range(6): # 0 - 6
mem.name += chr(_mem.name[i])
if _name and mem.number < 200:
for i in range(10):
mem.name += chr(_name.extra_name[i])

mem.name = mem.name.rstrip() # remove trailing spaces

mem.tuning_step = STEPS[_mem.tuning_step]

# ########## TONE ##########
dtcs_polarity = ['N', 'N']
if _mem.txtone == 0xFFF:
# All off
txmode = ""
elif _mem.txtone >= 0x8000:
# DTSC inverted when high bit is set - signed int
txmode = "DTCS"
mem.dtcs = int(format(int(_mem.txtone & 0x7FFF), 'o'))
dtcs_polarity[0] = "R"
elif _mem.txtone > 500:
txmode = "Tone"
mem.rtone = int(_mem.txtone) / 10.0
else:
# DTCS
txmode = "DTCS"
mem.dtcs = int(format(int(_mem.txtone), 'o'))
dtcs_polarity[0] = "N"
if _mem.rxtone == 0xFFF:
rxmode = ""
elif _mem.rxtone >= 0x8000:
# DTSC inverted when high bit is set
rxmode = "DTCS"
mem.rx_dtcs = int(format(int(_mem.rxtone & 0x7FFF), 'o'))
dtcs_polarity[1] = "R"
elif _mem.rxtone > 500:
rxmode = "Tone"
mem.ctone = int(_mem.rxtone) / 10.0
else:
rxmode = "DTCS"
mem.rx_dtcs = int(format(int(_mem.rxtone), 'o'))
dtcs_polarity[1] = "N"
mem.dtcs_polarity = "".join(dtcs_polarity)

mem.tmode = ""
if txmode == "Tone" and not rxmode:
mem.tmode = "Tone"
elif txmode == rxmode and txmode == "Tone" and mem.rtone == mem.ctone:
mem.tmode = "TSQL"
elif txmode == rxmode and txmode == "DTCS" and mem.dtcs == mem.rx_dtcs:
mem.tmode = "DTCS"
mem.rx_dtcs = mem.dtcs
dtcs_polarity[1] = dtcs_polarity[0]
elif rxmode or txmode:
mem.tmode = "Cross"
mem.cross_mode = "%s->%s" % (txmode, rxmode)
# ########## TONE ##########

mem.mode = self.MODES[_mem.mode]
mem.power = POWER_LEVELS[int(_mem.power)]

rs = RadioSettingValueList(B_LOCK_LIST,
B_LOCK_LIST[min(_mem.b_lock, 0x02)])
b_lock = RadioSetting("b_lock", "B_Lock", rs)
mem.extra.append(b_lock)

optsig = RadioSetting("signal", "Optional signaling",
RadioSettingValueList(
OPTSIG_LIST,
OPTSIG_LIST[_mem.signal]))
mem.extra.append(optsig)

vlist = RadioSettingValueList(PTTID_LIST, PTTID_LIST[_mem.dtmfpttid])
dtmfpttid = RadioSetting("dtmfpttid", "DTMF PTT ID", vlist)
mem.extra.append(dtmfpttid)

vlist2 = RadioSettingValueList(PTTID_LIST,
PTTID_LIST[_mem.fivetonepttid])
fivetonepttid = RadioSetting("fivetonepttid", "5 Tone PTT ID", vlist2)
mem.extra.append(fivetonepttid)

return mem

def _set_memory(self, mem, _mem, _name):
# """Convert UI column data (mem) into MEM_FORMAT memory (_mem)."""

_mem.rxfreq = mem.freq / 10
_mem.tuning_step = STEPS.index(mem.tuning_step)
if mem.duplex == "off":
_mem.txfreq = 0xFFFFFFFF
elif mem.duplex == "split":
_mem.txfreq = mem.offset / 10
elif mem.duplex == "+":
_mem.txfreq = (mem.freq + mem.offset) / 10
elif mem.duplex == "-":
_mem.txfreq = (mem.freq - mem.offset) / 10
else:
_mem.txfreq = _mem.rxfreq

out_name = mem.name.ljust(16)

for i in range(6): # 0 - 6
_mem.name[i] = ord(out_name[i])
if mem.number < 200:
for i in range(10):
_name.extra_name[i] = ord(out_name[i+6])

# autoset display to name if filled, else show frequency
if mem.name != " ":
_mem.display = True
else:
_mem.display = False
rxmode = ""
txmode = ""
sql_mode = "SQ"
if mem.tmode == "":
sql_mode = "SQ"
_mem.rxtone = 0xFFF
_mem.txtone = 0xFFF
elif mem.tmode == "Tone":
txmode = "Tone"
sql_mode = "SQ"
_mem.txtone = int(float(mem.rtone) * 10)
_mem.rxtone = 0xFFF
elif mem.tmode == "TSQL":
rxmode = "Tone"
txmode = "TSQL"
sql_mode = "CT"
_mem.rxtone = int(float(mem.ctone) * 10)
_mem.txtone = int(float(mem.ctone) * 10)
elif mem.tmode == "DTCS":
rxmode = "DTCS"
txmode = "DTCS"
sql_mode = "CT"
if mem.dtcs_polarity[0] == "N":
_mem.txtone = int(str(mem.dtcs), 8)
else:
_mem.txtone = int(str(mem.dtcs), 8) | 0x8000
if mem.dtcs_polarity[1] == "N":
_mem.rxtone = int(str(mem.dtcs), 8)
else:
_mem.rxtone = int(str(mem.dtcs), 8) | 0x8000
elif mem.tmode == "Cross":
txmode, rxmode = mem.cross_mode.split("->", 1)
if rxmode == "":
_mem.rxtone = 0xFFF
sql_mode = "SQ"
elif rxmode == "Tone":
sql_mode = "CT"
_mem.rxtone = int(float(mem.ctone) * 10)
elif rxmode == "DTCS":
sql_mode = "CT"
if mem.dtcs_polarity[0] == "N":
_mem.rxtone = int(str(mem.rx_dtcs), 8)
else:
_mem.rxtone = int(str(mem.rx_dtcs), 8) | 0x8000
if txmode == "":
_mem.txtone = 0xFFF
elif txmode == "Tone":
_mem.txtone = int(float(mem.rtone) * 10)
elif txmode == "TSQL":
_mem.txtone = int(float(mem.rtone) * 10)
elif txmode == "DTCS":
if mem.dtcs_polarity[1] == "N":
_mem.txtone = int(str(mem.dtcs), 8)
else:
_mem.txtone = int(str(mem.dtcs), 8) | 0x8000
_mem.sqlmode = SQL_MODES.index(sql_mode)
_mem.mode = self.MODES.index(mem.mode)
_mem.power = 0 if mem.power is None else POWER_LEVELS.index(mem.power)

for element in mem.extra:
setattr(_mem, element.get_name(), element.value)

return

def get_settings(self):
"""Translate the MEM_FORMAT structs into setstuf in the UI"""
_settings = self._memobj.basicsettings
# _settings2 = self._memobj.settings2
# _workmode = self._memobj.workmodesettings

basic = RadioSettingGroup("basic", "Basic Settings")
group = RadioSettings(basic)

# Display Mode
options = ['Frequency', 'Channel #', 'Name']
rx = RadioSettingValueList(options, options[_settings.disMode])
rset = RadioSetting("basicsettings.disMode", "Display Mode", rx)
basic.append(rset)

# Subscreen Mode
options = ['Off', 'Frequency', 'Voltage']
rx = RadioSettingValueList(options, options[_settings.subDisplay])
rset = RadioSetting("basicsettings.subDisplay", "Subscreen Mode", rx)
basic.append(rset)

# Squelch Level
options = ["OFF"] + ["%s" % x for x in range(1, 10)]
rx = RadioSettingValueList(options, options[_settings.sqlLevel])
rset = RadioSetting("basicsettings.sqlLevel", "Squelch Level", rx)
basic.append(rset)

# Tone Burst Frequency
options = ['1750', '2100', '1000', '1450']
rx = RadioSettingValueList(options, options[_settings.burstFreq])
rset = RadioSetting("basicsettings.burstFreq",
"Tone Burst Frequency (Hz)", rx)
basic.append(rset)

# PTT Release
options = ['Off', 'Begin', 'End', 'Both']
rx = RadioSettingValueList(options, options[_settings.pttRelease])
rset = RadioSetting("basicsettings.pttRelease", "PTT Release", rx)
basic.append(rset)

# TX Channel Select
options = ["Last Channel", "Main Channel"]
rx = RadioSettingValueList(options, options[_settings.txChSelect])
rset = RadioSetting("basicsettings.txChSelect",
"Priority Transmit", rx)
basic.append(rset)

# LED Mode
options = ["On", "5 Second", "10 Second"]
rx = RadioSettingValueList(options, options[_settings.ledMode])
rset = RadioSetting("basicsettings.ledMode", "LED Display Mode", rx)
basic.append(rset)

# Scan Type
options = ["TO", "CO", "SE"]
rx = RadioSettingValueList(options, options[_settings.scanType])
rset = RadioSetting("basicsettings.scanType", "Scan Type", rx)
basic.append(rset)

# Resume Time
options = ["2 seconds", "5 seconds", "10 seconds", "15 seconds"]
rx = RadioSettingValueList(options, options[_settings.scanResumeTime])
rset = RadioSetting("basicsettings.scanResumeTime",
"Scan Resume Time", rx)
basic.append(rset)

# Tail Elim
options = ["Off", "Frequency", "No Frequency"]
rx = RadioSettingValueList(options, options[_settings.sqlTailElim])
rset = RadioSetting("basicsettings.sqlTailElim", "Sql Tail Elim", rx)
basic.append(rset)

# Auto Power Off
options = ["Off", "30 minute", "60 minute", "120 minute"]
rx = RadioSettingValueList(options, options[_settings.autoPowOff])
rset = RadioSetting("basicsettings.autoPowOff", "Auto Power Off", rx)
basic.append(rset)

# TOT
options = ["Off"] + ["%s minutes" % x for x in range(1, 31, 1)]
rx = RadioSettingValueList(options, options[_settings.tot])
rset = RadioSetting("basicsettings.tot",
"Transmission Time-out Timer", rx)
basic.append(rset)

# Beep
rx = RadioSettingValueBoolean(_settings.beep)
rset = RadioSetting("basicsettings.beep", "Keypad Beep", rx)
basic.append(rset)

# Volume
options = ["%s" % x for x in range(0, 16)]
rx = RadioSettingValueList(options, options[_settings.volume])
rset = RadioSetting("basicsettings.volume",
"Volume", rx)
basic.append(rset)

# Require Power On Password
rx = RadioSettingValueBoolean(_settings.usePowerOnPw)
rset = RadioSetting("basicsettings.usePowerOnPw",
"Require Power On Password", rx)
basic.append(rset)

# Power On Password Value
pwdigits = ""
for i in range(6): # 0 - 6
char = chr(_settings.powerOnPw[i])
pwdigits += char
rx = RadioSettingValueString(0, 6, pwdigits)
rset = RadioSetting("basicsettings.powerOnPw", "Power On Password", rx)
basic.append(rset)

# Intro Screen
'''
#disabling since the memory map for this is still a bit ambigiuous
options = ["Off", "Image", "Character String"]
rx = RadioSettingValueList(options, options[_settings.introScreen])
rset = RadioSetting("basicsettings.introScreen", "Intro Screen", rx)
basic.append(rset)
'''

key_options = ["A/B", "Low", "Monitor", "Scan",
"Tone", "M/V", "MHz", "Mute"]
# LO key function
options = key_options
rx = RadioSettingValueList(options, options[_settings.lowKeyFunc])
rset = RadioSetting("basicsettings.lowKeyFunc", "LO Key Function", rx)
basic.append(rset)

# Mz key function
options = key_options
rx = RadioSettingValueList(options, options[_settings.mzKeyFunc])
rset = RadioSetting("basicsettings.mzKeyFunc", "Mz Key Function", rx)
basic.append(rset)

# CT key function
options = key_options
rx = RadioSettingValueList(options, options[_settings.ctKeyFunc])
rset = RadioSetting("basicsettings.ctKeyFunc", "CT Key Function", rx)
basic.append(rset)

# V/M key function
options = key_options
rx = RadioSettingValueList(options, options[_settings.vmKeyFunc])
rset = RadioSetting("basicsettings.vmKeyFunc", "V/M Key Function", rx)
basic.append(rset)

# A/B key function
options = key_options
rx = RadioSettingValueList(options, options[_settings.abKeyFunc])
rset = RadioSetting("basicsettings.abKeyFunc", "A/B Key Function", rx)
basic.append(rset)

# Menu Operation
rx = RadioSettingValueBoolean(_settings.menuOperation)
rset = RadioSetting("basicsettings.menuOperation",
"Menu Operation", rx)
basic.append(rset)

# SQ tail elim with no tone option
rx = RadioSettingValueBoolean(_settings.elimTailNoTone)
rset = RadioSetting("basicsettings.elimTailNoTone",
"Eliminate Squelch Tail When No CT/DCS Signalling",
rx)
basic.append(rset)

# Disable Reset Option
rx = RadioSettingValueBoolean(_settings.disableReset)
rset = RadioSetting("basicsettings.disableReset", "Disable Reset", rx)
basic.append(rset)
'''
advanced = RadioSettingGroup("advanced", "Advanced Settings")
group.append(advanced)

# software only
options = ['Off', 'Frequency']
rx = RadioSettingValueList(options, options[_settings.endToneElim])
rset = RadioSetting("basicsettings.endToneElim", "End Tone Elim", rx)
advanced.append(rset)

# software only
name = ""
for i in range(15): # 0 - 15
char = chr(int(self._memobj.openradioname.name1[i]))
if char == "\x00":
char = " " # Other software may have 0x00 mid-name
name += char
name = name.rstrip() # remove trailing spaces

rx = RadioSettingValueString(0, 15, name)
rset = RadioSetting("openradioname.name1", "Intro Line 1", rx)
advanced.append(rset)

# software only
name = ""
for i in range(15): # 0 - 15
char = chr(int(self._memobj.openradioname.name2[i]))
if char == "\x00":
char = " " # Other software may have 0x00 mid-name
name += char
name = name.rstrip() # remove trailing spaces

rx = RadioSettingValueString(0, 15, name)
rset = RadioSetting("openradioname.name2", "Intro Line 2", rx)
advanced.append(rset)
'''

def myset_mask(setting, obj, atrb, nx):
if bool(setting.value): # Enabled = 1
vx = 1
else:
vx = 0
_do_map(nx + 1, vx, self._memobj.fmmap.fmset)
return

def myset_freq(setting, obj, atrb, mult):
""" Callback to set frequency by applying multiplier"""
value = int(float(str(setting.value)) * mult)
setattr(obj, atrb, value)
return

return group # END get_settings()

def set_settings(self, settings):
_settings = self._memobj.basicsettings
# _mem = self._memobj
for element in settings:
if not isinstance(element, RadioSetting):
self.set_settings(element)
continue
else:
try:
name = element.get_name()
if "." in name:
bits = name.split(".")
obj = self._memobj
for bit in bits[:-1]:
if "/" in bit:
bit, index = bit.split("/", 1)
index = int(index)
obj = getattr(obj, bit)[index]
else:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = _settings
setting = element.get_name()
if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif setting == "powerOnPw":
temp = []
for c in element.value:
temp.append(ord(c))
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, temp)
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception:
LOG.debug(element.get_name())
raise
(1-1/15)