Project

General

Profile

New Model #8859 » anytone778uv_vox.py

Jim Unroe, 03/08/2021 01:59 PM

 
# Copyright 2020 Joe Milbourn <joe@milbourn.org.uk>
# Copyright 2020 Jim Unroe <rock.unroe@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# TODO use the band field from ver_response
# TODO handle radio settings
#
# Supported features
# * Read and write memory access for 200 normal memories
# * CTCSS and DTCS for transmit and receive
# * Scan list
# * Tx off
# * Duplex (+ve, -ve, odd, and off splits)
# * Transmit power
# * Channel width (25kHz and 12.5kHz)
# * Retevis RT95, CRT Micron UV, and Midland DBR2500 radios
# * Full range of frequencies for tx and rx, supported band read from radio
# during download, not verified on upload. Radio will refuse to TX if out of
# band.
#
# Unsupported features
# * VFO1, VFO2, and TRF memories
# * custom CTCSS tones
# * Any non-memory radio settings
# * Reverse, talkaround, scramble
# * busy channel lock out
# * probably other things too - like things encoded by the unknown bits in the
# memory struct

from chirp import chirp_common, directory, memmap, errors, util
from chirp import bitwise
from chirp.settings import RadioSettingGroup, RadioSetting, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueString, RadioSettingValueInteger, \
RadioSettingValueFloat, RadioSettings, InvalidValueError

import struct
import time
import logging

LOG = logging.getLogger(__name__)

# Gross hack to handle missing future module on un-updatable
# platforms like MacOS. Just avoid registering these radio
# classes for now.
try:
from builtins import bytes
has_future = True
except ImportError:
has_future = False
LOG.warning('python-future package is not '
'available; %s requires it' % __name__)


# Here is where we define the memory map for the radio. Since
# We often just know small bits of it, we can use #seekto to skip
# around as needed.

MEM_FORMAT = '''
#seekto 0x0000;
struct {
bbcd freq[4];
bbcd offset[4];
u8 unknown1;
u8 talkaround:1,
scramble:1,
unknown:2,
txpower:2,
duplex:2;
u8 unknown_bits1:4,
channel_width:2,
reverse:1,
tx_off:1;
u8 unknown_bits2:4,
dtcs_decode_en:1,
ctcss_decode_en:1,
dtcs_encode_en:1,
ctcss_encode_en:1;
u8 ctcss_dec_tone;
u8 ctcss_enc_tone;
u8 dtcs_decode_code;
u8 unknown_bits6:6,
dtcs_decode_invert:1,
dtcs_decode_code_highbit:1;
u8 dtcs_encode_code;
u8 unknown_bits7:6,
dtcs_encode_invert:1,
dtcs_encode_code_highbit:1;
u8 unknown_bits4:6,
busy_channel_lockout:2;
u8 unknown6;
u8 unknown_bits5:7,
tone_squelch_en:1;
u8 unknown7;
u8 unknown8;
u8 unknown9;
u8 unknown10;
char name[5];
ul16 customctcss;
} memory[200];
#seekto 0x1940;
struct {
u8 occupied_bitfield[32];
u8 scan_enabled_bitfield[32];
} memory_status;

#seekto 0x1980;
struct {
char line[7]; // starting display
} starting_display;

#seekto 0x1990;
struct {
u8 code[16]; // DTMF Encode M1-M16
} pttid[16];

#seekto 0x1A90;
struct {
u8 pttIdStart[16]; // 0x1A90 ptt id starting
u8 pttIdEnd[16]; // 0x1AA0 ptt id ending
u8 remoteStun[16]; // 0x1AB0 remotely stun
u8 remoteKill[16]; // 0x1AC0 remotely kill
u8 intervalChar; // 0x1AD0 dtmf interval character
u8 groupCode; // 0x1AD1 group code
u8 unk1ad2:6, // 0x1AD2
decodingResponse:2; // decoding response
u8 pretime; // 0x1AD3 pretime
u8 firstDigitTime; // 0x1AD4 first digit time
u8 autoResetTime; // 0x1AD5 auto reset time
u8 selfID[3]; // 0x1AD6 dtmf self id
u8 unk1ad9:7, // 0x1AD9
sideTone:1; // side tone
u8 timeLapse; // 0x1ADA time-lapse after encode
u8 pauseTime; // 0x1ADB ptt id pause time
} dtmf;

#seekto 0x3200;
struct {
u8 unk3200:5, // 0x3200
beepVolume:3; // beep volume
u8 unk3201:4, // 0x3201
frequencyStep:4; // frequency step
u8 unk3202:6, // 0x3202
displayMode:2; // display mode
u8 unk0x3203;
u8 unk3204:4, // 0x3204
squelchLevelA:4; // squelch level a
u8 unk3205:4, // 0x3205
squelchLevelB:4; // squelch level b
u8 unk3206:2, // 0x3206
speakerVol:6; // speaker volume
u8 unk3207:7, // 0x3207
powerOnPasswd:1; // power-on password
u8 unk3208:6, // 0x3208
scanType:2; // scan type
u8 unk3209:6, // 0x3209
scanRecoveryT:2; // scan recovery time
u8 unk320a:7, // 0x320A
autoPowerOn:1; // auto power on
u8 unk320b:7, // 0x320B
main:1; // main
u8 unk320c:7, // 0x320C
dualWatch:1; // dual watch (rx way select)
u8 unk320d:5, // 0x320D
backlightBr:3; // backlight brightness
u8 unk320e:3, // 0x320E
timeOutTimer:5; // time out timer
u8 unk320f:6, // 0x320F
autoPowerOff:2; // auto power off
u8 unk3210:6, // 0x3210
tbstFrequency:2; // tbst frequency
u8 unk3211:7, // 0x3211
screenDir:1; // screen direction
u8 unk3212:2, // 0x3212
micKeyBrite:6; // hand mic key brightness
u8 unk3213:6, // 0x3213
speakerSwitch:2; // speaker switch
u8 keyPA; // 0x3214 key pa
u8 keyPB; // 0x3215 key pb
u8 keyPC; // 0x3216 key pc
u8 keyPD; // 0x3217 key pd
u8 unk3218:5, // 0x3218
steType:3; // ste type
u8 unk3219:6, // 0x3219
steFrequency:2; // ste frequency
u8 unk321a:5, // 0x321A
dtmfTxTime:3; // dtmf transmitting time
u8 unk_bit7_6:2, // 0x321B
monKeyFunction:1, // mon key function
channelLocked:1, // channel locked
saveChParameter:1, // save channel parameter
powerOnReset:1, // power on reset
trfEnable:1, // trf enable
knobMode:1; // knob mode
} settings;

#seekto 0x3240;
struct {
char digits[6]; // password
} password;

#seekto 0x3250;
struct {
u8 keyMode1P1; // 0x3250 key mode 1 p1
u8 keyMode1P2; // 0x3251 key mode 1 p2
u8 keyMode1P3; // 0x3252 key mode 1 p3
u8 keyMode1P4; // 0x3253 key mode 1 p4
u8 keyMode1P5; // 0x3254 key mode 1 p5
u8 keyMode1P6; // 0x3255 key mode 1 p6
u8 keyMode2P1; // 0x3256 key mode 2 p1
u8 keyMode2P2; // 0x3257 key mode 2 p2
u8 keyMode2P3; // 0x3258 key mode 2 p3
u8 keyMode2P4; // 0x3259 key mode 2 p4
u8 keyMode2P5; // 0x325A key mode 2 p5
u8 keyMode2P6; // 0x325B key mode 2 p6
} pfkeys;

#seekto 0x3260;
struct {
u8 mrChanA; // 0x3260 mr channel a
u8 unknown1_0:7, // 0x3261
vfomrA:1; // vfo/mr mode a
u8 unknown2;
u8 unknown3;
u8 unknown4;
u8 unknown5;
u8 unknown6;
u8 mrChanB; // 0x3267 mr channel b
u8 unknown8_0:4, // 0x3268
scan_active:1,
unknown8_1:2,
vfomrB:1; // vfo/mr mode b
u8 unknown9;
u8 unknowna;
u8 unknownb;
u8 unknownc;
u8 bandlimit; // 0x326D mode
u8 unknownd;
u8 unknowne;
u8 unknownf;
} radio_settings;
'''

# Format for the version messages returned by the radio
VER_FORMAT = '''
u8 hdr;
char model[7];
u8 bandlimit;
char version[6];
u8 ack;
'''

TXPOWER_LOW = 0x00
TXPOWER_MED = 0x01
TXPOWER_HIGH = 0x02

DUPLEX_NOSPLIT = 0x00
DUPLEX_POSSPLIT = 0x01
DUPLEX_NEGSPLIT = 0x02
DUPLEX_ODDSPLIT = 0x03

CHANNEL_WIDTH_25kHz = 0x02
CHANNEL_WIDTH_20kHz = 0x01
CHANNEL_WIDTH_12d5kHz = 0x00

BUSY_CHANNEL_LOCKOUT_OFF = 0x00
BUSY_CHANNEL_LOCKOUT_REPEATER = 0x01
BUSY_CHANNEL_LOCKOUT_BUSY = 0x02

MEMORY_ADDRESS_RANGE = (0x0000, 0x3290)
MEMORY_RW_BLOCK_SIZE = 0x10
MEMORY_RW_BLOCK_CMD_SIZE = 0x16

POWER_LEVELS = [chirp_common.PowerLevel('Low', dBm=37),
chirp_common.PowerLevel('Medium', dBm=40),
chirp_common.PowerLevel('High', dBm=44)]

# CTCSS Tone definitions
TONE_CUSTOM_CTCSS = 0x33
TONE_MAP_VAL_TO_TONE = {0x00: 62.5, 0x01: 67.0, 0x02: 69.3,
0x03: 71.9, 0x04: 74.4, 0x05: 77.0,
0x06: 79.7, 0x07: 82.5, 0x08: 85.4,
0x09: 88.5, 0x0a: 91.5, 0x0b: 94.8,
0x0c: 97.4, 0x0d: 100.0, 0x0e: 103.5,
0x0f: 107.2, 0x10: 110.9, 0x11: 114.8,
0x12: 118.8, 0x13: 123.0, 0x14: 127.3,
0x15: 131.8, 0x16: 136.5, 0x17: 141.3,
0x18: 146.2, 0x19: 151.4, 0x1a: 156.7,
0x1b: 159.8, 0x1c: 162.2, 0x1d: 165.5,
0x1e: 167.9, 0x1f: 171.3, 0x20: 173.8,
0x21: 177.3, 0x22: 179.9, 0x23: 183.5,
0x24: 186.2, 0x25: 189.9, 0x26: 192.8,
0x27: 196.6, 0x28: 199.5, 0x29: 203.5,
0x2a: 206.5, 0x2b: 210.7, 0x2c: 218.1,
0x2d: 225.7, 0x2e: 229.1, 0x2f: 233.6,
0x30: 241.8, 0x31: 250.3, 0x32: 254.1}

TONE_MAP_TONE_TO_VAL = {TONE_MAP_VAL_TO_TONE[val]: val
for val in TONE_MAP_VAL_TO_TONE}

TONES_EN_TXTONE = (1 << 3)
TONES_EN_RXTONE = (1 << 2)
TONES_EN_TXCODE = (1 << 1)
TONES_EN_RXCODE = (1 << 0)
TONES_EN_NO_TONE = 0

# Radio supports upper case and symbols
CHARSET_ASCII_PLUS = chirp_common.CHARSET_UPPER_NUMERIC + '- '

# Band limits as defined by the band byte in ver_response, defined in Hz, for
# VHF and UHF, used for RX and TX.
BAND_LIMITS = {0x00: [(144000000, 148000000), (430000000, 440000000)],
0x01: [(136000000, 174000000), (400000000, 490000000)],
0x02: [(144000000, 146000000), (430000000, 440000000)]}


# Get band limits from a band limit value
def get_band_limits_Hz(limit_value):
if limit_value not in BAND_LIMITS:
limit_value = 0x01
LOG.warning('Unknown band limit value 0x%02x, default to 0x01')
bandlimitfrequencies = BAND_LIMITS[limit_value]
return bandlimitfrequencies


# Calculate the checksum used in serial packets
def checksum(message_bytes):
mask = 0xFF
checksum = 0
for b in message_bytes:
checksum = (checksum + b) & mask
return checksum


# Send a command to the radio, return any reply stripping the echo of the
# command (tx and rx share a single pin in this radio)
def send_serial_command(serial, command, expectedlen=None):
''' send a command to the radio, and return any response.
set expectedlen to return as soon as that many bytes are read.
'''
serial.write(command)
serial.flush()

response = b''
tout = time.time() + 0.5
while time.time() < tout:
if serial.inWaiting():
response += serial.read()
# remember everything gets echo'd back
if len(response) - len(command) == expectedlen:
break

# cut off what got echo'd back, we don't need to see it again
if response.startswith(command):
response = response[len(command):]

return response


# strip trailing 0x00 to convert a string returned by bitwise.parse into a
# python string
def cstring_to_py_string(cstring):
return "".join(c for c in cstring if c != '\x00')


# Check the radio version reported to see if it's one we support,
# returns bool version supported, and the band index
def check_ver(ver_response, allowed_types):
''' Check the returned radio version is one we approve of '''

LOG.debug('ver_response = ')
LOG.debug(util.hexprint(ver_response))

resp = bitwise.parse(VER_FORMAT, ver_response)
verok = False

if resp.hdr == 0x49 and resp.ack == 0x06:
model, version = [cstring_to_py_string(bitwise.get_string(s)).strip()
for s in (resp.model, resp.version)]
LOG.debug('radio model: \'%s\' version: \'%s\'' %
(model, version))
LOG.debug('allowed_types = %s' % allowed_types)

if model in allowed_types:
LOG.debug('model in allowed_types')

if version in allowed_types[model]:
LOG.debug('version in allowed_types[model]')
verok = True
else:
raise errors.RadioError('Failed to parse version response')

return verok, int(resp.bandlimit)


# Put the radio in programming mode, sending the initial command and checking
# the response. raise RadioError if there is no response (500ms timeout), and
# if the returned version isn't matched by check_ver
def enter_program_mode(radio):
serial = radio.pipe
# place the radio in program mode, and confirm
program_response = send_serial_command(serial, b'PROGRAM')

if program_response != b'QX\x06':
raise errors.RadioError('No initial response from radio.')
LOG.debug('entered program mode')

# read the radio ID string, make sure it matches one we know about
ver_response = send_serial_command(serial, b'\x02')

verok, bandlimit = check_ver(ver_response, radio.ALLOWED_RADIO_TYPES)
if not verok:
exit_program_mode(radio)
raise errors.RadioError(
'Radio version not in allowed list for %s-%s: %s' %
(radio.VENDOR, radio.MODEL, util.hexprint(ver_response)))

return bandlimit


# Exit programming mode
def exit_program_mode(radio):
send_serial_command(radio.pipe, b'END')


# Parse a packet from the radio returning the header (R/W, address, data, and
# checksum valid
def parse_read_response(resp):
addr = resp[:4]
data = bytes(resp[4:-2])
cs = checksum(ord(d) for d in resp[1:-2])
valid = cs == ord(resp[-2])
if not valid:
LOG.error('checksumfail: %02x, expected %02x' % (cs, ord(resp[-2])))
LOG.error('msg data: %s' % util.hexprint(resp))
return addr, data, valid


# Download data from the radio and populate the memory map
def do_download(radio):
'''Download memories from the radio'''

# Get the serial port connection
serial = radio.pipe

try:
enter_program_mode(radio)

memory_data = bytes()

# status info for the UI
status = chirp_common.Status()
status.cur = 0
status.max = (MEMORY_ADDRESS_RANGE[1] -
MEMORY_ADDRESS_RANGE[0])/MEMORY_RW_BLOCK_SIZE
status.msg = 'Cloning from radio...'
radio.status_fn(status)

for addr in range(MEMORY_ADDRESS_RANGE[0],
MEMORY_ADDRESS_RANGE[1] + MEMORY_RW_BLOCK_SIZE,
MEMORY_RW_BLOCK_SIZE):
read_command = struct.pack('>BHB', 0x52, addr,
MEMORY_RW_BLOCK_SIZE)
read_response = send_serial_command(serial, read_command,
MEMORY_RW_BLOCK_CMD_SIZE)
# LOG.debug('read response:\n%s' % util.hexprint(read_response))

address, data, valid = parse_read_response(read_response)
memory_data += data

# update UI
status.cur = (addr - MEMORY_ADDRESS_RANGE[0])\
/ MEMORY_RW_BLOCK_SIZE
radio.status_fn(status)

exit_program_mode(radio)
except errors.RadioError as e:
raise e
except Exception as e:
raise errors.RadioError('Failed to download from radio: %s' % e)

return memmap.MemoryMapBytes(memory_data)


# Build a write data command to send to the radio
def make_write_data_cmd(addr, data, datalen):
cmd = struct.pack('>BHB', 0x57, addr, datalen)
cmd += data
cs = checksum(ord(c) for c in cmd[1:])
cmd += struct.pack('>BB', cs, 0x06)
return cmd


# Upload a memory map to the radio
def do_upload(radio):
try:
bandlimit = enter_program_mode(radio)

if bandlimit != radio._memobj.radio_settings.bandlimit:
LOG.warning('radio and image bandlimits differ'
' some channels many not work'
' (img:0x%02x radio:0x%02x)' %
(int(bandlimit),
int(radio._memobj.radio_settings.bandlimit)))
LOG.warning('radio bands: %s' % get_band_limits_Hz(
int(radio._memobj.radio_settings.bandlimit)))
LOG.warning('img bands: %s' % get_band_limits_Hz(bandlimit))

serial = radio.pipe

# send the initial message, radio responds with something that looks a
# bit like a bitfield, but I don't know what it is yet.
read_command = struct.pack('>BHB', 0x52, 0x3b10, MEMORY_RW_BLOCK_SIZE)
read_response = send_serial_command(serial, read_command,
MEMORY_RW_BLOCK_CMD_SIZE)
address, data, valid = parse_read_response(read_response)
LOG.debug('Got initial response from radio: %s' %
util.hexprint(read_response))

bptr = 0

memory_addrs = range(MEMORY_ADDRESS_RANGE[0],
MEMORY_ADDRESS_RANGE[1] + MEMORY_RW_BLOCK_SIZE,
MEMORY_RW_BLOCK_SIZE)

# status info for the UI
status = chirp_common.Status()
status.cur = 0
status.max = len(memory_addrs)
status.msg = 'Cloning to radio...'
radio.status_fn(status)

for idx, addr in enumerate(memory_addrs):
write_command = make_write_data_cmd(
addr, radio._mmap[bptr:bptr+MEMORY_RW_BLOCK_SIZE],
MEMORY_RW_BLOCK_SIZE)
# LOG.debug('write data:\n%s' % util.hexprint(write_command))
write_response = send_serial_command(serial, write_command, 0x01)
bptr += MEMORY_RW_BLOCK_SIZE

if write_response == '\x0a':
# NACK from radio, e.g. checksum wrongn
LOG.debug('Radio returned 0x0a - NACK:')
LOG.debug(' * write cmd:\n%s' % util.hexprint(write_command))
LOG.debug(' * write response:\n%s' %
util.hexprint(write_response))
exit_program_mode(radio)
raise errors.RadioError('Radio NACK\'d write command')

# update UI
status.cur = idx
radio.status_fn(status)
exit_program_mode(radio)
except errors.RadioError:
raise
except Exception as e:
raise errors.RadioError('Failed to download from radio: %s' % e)


# Get the value of @bitfield @number of bits in from 0
def get_bitfield(bitfield, number):
''' Get the value of @bitfield @number of bits in '''
byteidx = number//8
bitidx = number - (byteidx * 8)
return bitfield[byteidx] & (1 << bitidx)


# Set the @value of @bitfield @number of bits in from 0
def set_bitfield(bitfield, number, value):
''' Set the @value of @bitfield @number of bits in '''
byteidx = number//8
bitidx = number - (byteidx * 8)
if value is True:
bitfield[byteidx] |= (1 << bitidx)
else:
bitfield[byteidx] &= ~(1 << bitidx)
return bitfield


# Translate the radio's version of a code as stored to a real code
def dtcs_code_bits_to_val(highbit, lowbyte):
return chirp_common.ALL_DTCS_CODES[highbit*256 + lowbyte]


# Translate the radio's version of a tone as stored to a real tone
def ctcss_tone_bits_to_val(tone_byte):
# TODO use the custom setting 0x33 and ref the custom ctcss
# field
tone_byte = int(tone_byte)
if tone_byte in TONE_MAP_VAL_TO_TONE:
return TONE_MAP_VAL_TO_TONE[tone_byte]
elif tone_byte == TONE_CUSTOM_CTCSS:
LOG.info('custom ctcss not implemented (yet?).')
else:
raise errors.UnsupportedToneError('unknown ctcss tone value: %02x' %
tone_byte)


# Translate a real tone to the radio's version as stored
def ctcss_code_val_to_bits(tone_value):
if tone_value in TONE_MAP_TONE_TO_VAL:
return TONE_MAP_TONE_TO_VAL[tone_value]
else:
raise errors.UnsupportedToneError('Tone %f not supported' % tone_value)


# Translate a real code to the radio's version as stored
def dtcs_code_val_to_bits(code):
val = chirp_common.ALL_DTCS_CODES.index(code)
return (val & 0xFF), ((val >> 8) & 0x01)


class AnyTone778UVBase(chirp_common.CloneModeRadio,
chirp_common.ExperimentalRadio):
'''AnyTone 778UV and probably Retivis RT95 and others'''
BAUD_RATE = 9600
NEEDS_COMPAT_SERIAL = False

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()

rp.experimental = \
('This is experimental support for the %s %s. '
'Please send in bug and enhancement requests!' %
(cls.VENDOR, cls.MODEL))

return rp

# Return information about this radio's features, including
# how many memories it has, what bands it supports, etc
def get_features(self):
rf = chirp_common.RadioFeatures()
rf.has_bank = False
rf.has_settings = True
rf.can_odd_split = True
rf.has_name = True
rf.has_offset = True
rf.valid_name_length = 5
rf.valid_duplexes = ['', '+', '-', 'split', 'off']
rf.valid_characters = CHARSET_ASCII_PLUS

rf.has_dtcs = True
rf.has_rx_dtcs = True
rf.has_dtcs_polarity = True
rf.valid_dtcs_codes = chirp_common.ALL_DTCS_CODES
rf.has_ctone = True
rf.has_cross = True
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
rf.valid_cross_modes = ['Tone->Tone',
'Tone->DTCS',
'DTCS->Tone',
'DTCS->DTCS',
'DTCS->',
'->DTCS',
'->Tone']

rf.memory_bounds = (1, 200) # This radio supports memories 1-200
try:
rf.valid_bands = get_band_limits_Hz(
int(self._memobj.radio_settings.bandlimit))
except TypeError as e:
# If we're asked without memory loaded, assume the most permissive
rf.valid_bands = get_band_limits_Hz(1)
except Exception as e:
LOG.error('Failed to get band limits for anytone778uv: %s' % e)
rf.valid_bands = get_band_limits_Hz(1)
rf.valid_modes = ['FM', 'NFM']
rf.valid_power_levels = POWER_LEVELS
rf.valid_tuning_steps = [2.5, 5, 6.25, 10, 12.5, 20, 25, 30, 50]
rf.has_tuning_step = False
return rf

# Do a download of the radio from the serial port
def sync_in(self):
self._mmap = do_download(self)
self.process_mmap()

# Do an upload of the radio to the serial port
def sync_out(self):
do_upload(self)

# Convert the raw byte array into a memory object structure
def process_mmap(self):
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

# Return a raw representation of the memory object, which
# is very helpful for development
def get_raw_memory(self, number):
return repr(self._memobj.memory[number - 1])

# Extract a high-level memory object from the low-level memory map
# This is called to populate a memory in the UI
def get_memory(self, number):
number -= 1
# Get a low-level memory object mapped to the image
_mem = self._memobj.memory[number]
_mem_status = self._memobj.memory_status

# Create a high-level memory object to return to the UI
mem = chirp_common.Memory()
mem.number = number + 1 # Set the memory number

# Check if this memory is present in the occupied list
mem.empty = get_bitfield(_mem_status.occupied_bitfield, number) == 0

if not mem.empty:
# Check if this memory is in the scan enabled list
mem.skip = ''
if get_bitfield(_mem_status.scan_enabled_bitfield, number) == 0:
mem.skip = 'S'

# set the name
mem.name = str(_mem.name).rstrip() # Set the alpha tag

# Convert your low-level frequency and offset to Hertz
mem.freq = int(_mem.freq) * 10
mem.offset = int(_mem.offset) * 10

# Set the duplex flags
if _mem.duplex == DUPLEX_POSSPLIT:
mem.duplex = '+'
elif _mem.duplex == DUPLEX_NEGSPLIT:
mem.duplex = '-'
elif _mem.duplex == DUPLEX_NOSPLIT:
mem.duplex = ''
elif _mem.duplex == DUPLEX_ODDSPLIT:
mem.duplex = 'split'
else:
LOG.error('%s: get_mem: unhandled duplex: %02x' %
(mem.name, _mem.duplex))

# handle tx off
if _mem.tx_off:
mem.duplex = 'off'

# Set the channel width
if _mem.channel_width == CHANNEL_WIDTH_25kHz:
mem.mode = 'FM'
elif _mem.channel_width == CHANNEL_WIDTH_20kHz:
LOG.info(
'%s: get_mem: promoting 20kHz channel width to 25kHz' %
mem.name)
mem.mode = 'FM'
elif _mem.channel_width == CHANNEL_WIDTH_12d5kHz:
mem.mode = 'NFM'
else:
LOG.error('%s: get_mem: unhandled channel width: 0x%02x' %
(mem.name, _mem.channel_width))

# set the power level
if _mem.txpower == TXPOWER_LOW:
mem.power = POWER_LEVELS[0]
elif _mem.txpower == TXPOWER_MED:
mem.power = POWER_LEVELS[1]
elif _mem.txpower == TXPOWER_HIGH:
mem.power = POWER_LEVELS[2]
else:
LOG.error('%s: get_mem: unhandled power level: 0x%02x' %
(mem.name, _mem.txpower))

# CTCSS Tones
# TODO support custom ctcss tones here
txtone = None
rxtone = None
rxcode = None
txcode = None

# check if dtcs tx is enabled
if _mem.dtcs_encode_en:
txcode = dtcs_code_bits_to_val(_mem.dtcs_encode_code_highbit,
_mem.dtcs_encode_code)

# check if dtcs rx is enabled
if _mem.dtcs_decode_en:
rxcode = dtcs_code_bits_to_val(_mem.dtcs_decode_code_highbit,
_mem.dtcs_decode_code)

if txcode is not None:
LOG.debug('%s: get_mem dtcs_enc: %d' % (mem.name, txcode))
if rxcode is not None:
LOG.debug('%s: get_mem dtcs_dec: %d' % (mem.name, rxcode))

# tsql set if radio squelches on tone
tsql = _mem.tone_squelch_en

# check if ctcss tx is enabled
if _mem.ctcss_encode_en:
txtone = ctcss_tone_bits_to_val(_mem.ctcss_enc_tone)

# check if ctcss rx is enabled
if _mem.ctcss_decode_en:
rxtone = ctcss_tone_bits_to_val(_mem.ctcss_dec_tone)

# Define this here to allow a readable if-else tree enabling tone
# options
enabled = 0
enabled |= (txtone is not None) * TONES_EN_TXTONE
enabled |= (rxtone is not None) * TONES_EN_RXTONE
enabled |= (txcode is not None) * TONES_EN_TXCODE
enabled |= (rxcode is not None) * TONES_EN_RXCODE

# Add some debugging output for the tone bitmap
enstr = []
if enabled & TONES_EN_TXTONE:
enstr += ['TONES_EN_TXTONE']
if enabled & TONES_EN_RXTONE:
enstr += ['TONES_EN_RXTONE']
if enabled & TONES_EN_TXCODE:
enstr += ['TONES_EN_TXCODE']
if enabled & TONES_EN_RXCODE:
enstr += ['TONES_EN_RXCODE']
if enabled == 0:
enstr = ['TONES_EN_NOTONE']
LOG.debug('%s: enabled = %s' % (
mem.name, '|'.join(enstr)))

mem.tmode = ''
if enabled == TONES_EN_NO_TONE:
mem.tmode = ''
elif enabled == TONES_EN_TXTONE:
mem.tmode = 'Tone'
mem.rtone = txtone
elif enabled == TONES_EN_RXTONE and tsql:
mem.tmode = 'Cross'
mem.cross_mode = '->Tone'
mem.ctone = rxtone
elif enabled == (TONES_EN_TXTONE | TONES_EN_RXTONE) and tsql:
if txtone == rxtone: # TSQL
mem.tmode = 'TSQL'
mem.ctone = txtone
else: # Tone->Tone
mem.tmode = 'Cross'
mem.cross_mode = 'Tone->Tone'
mem.ctone = rxtone
mem.rtone = txtone
elif enabled == TONES_EN_TXCODE:
mem.tmode = 'Cross'
mem.cross_mode = 'DTCS->'
mem.dtcs = txcode
elif enabled == TONES_EN_RXCODE and tsql:
mem.tmode = 'Cross'
mem.cross_mode = '->DTCS'
mem.rx_dtcs = rxcode
elif enabled == (TONES_EN_TXCODE | TONES_EN_RXCODE) and tsql:
if rxcode == txcode:
mem.tmode = 'DTCS'
mem.rx_dtcs = rxcode
# #8327 Not sure this is the correct interpretation of
# DevelopersToneModes, but it seems to make it work round
# tripping with the anytone software. DTM implies that we
# might not need to set mem.dtcs, but if we do it only DTCS
# rx works (as if we were Cross:None->DTCS).
mem.dtcs = rxcode
else:
mem.tmode = 'Cross'
mem.cross_mode = 'DTCS->DTCS'
mem.rx_dtcs = rxcode
mem.dtcs = txcode
elif enabled == (TONES_EN_TXCODE | TONES_EN_RXTONE) and tsql:
mem.tmode = 'Cross'
mem.cross_mode = 'DTCS->Tone'
mem.dtcs = txcode
mem.ctone = rxtone
elif enabled == (TONES_EN_TXTONE | TONES_EN_RXCODE) and tsql:
mem.tmode = 'Cross'
mem.cross_mode = 'Tone->DTCS'
mem.rx_dtcs = rxcode
mem.rtone = txtone
else:
LOG.error('%s: Unhandled tmode enabled = %d.' % (
mem.name, enabled))

# Can get here if e.g. TONE_EN_RXCODE is set and tsql isn't
# In that case should we perhaps store the tone and code values
# if they're present and then setup tmode and cross_mode as
# appropriate later?

# set the dtcs polarity
dtcs_pol_bit_to_str = {0: 'N', 1: 'R'}
mem.dtcs_polarity = '%s%s' %\
(dtcs_pol_bit_to_str[_mem.dtcs_encode_invert == 1],
dtcs_pol_bit_to_str[_mem.dtcs_decode_invert == 1])

return mem

# Store details about a high-level memory to the memory map
# This is called when a user edits a memory in the UI
def set_memory(self, mem):
# Get a low-level memory object mapped to the image
_mem = self._memobj.memory[mem.number - 1]
_mem_status = self._memobj.memory_status

# set the occupied bitfield
_mem_status.occupied_bitfield = \
set_bitfield(_mem_status.occupied_bitfield, mem.number - 1,
not mem.empty)

# set the scan add bitfield
_mem_status.scan_enabled_bitfield = \
set_bitfield(_mem_status.scan_enabled_bitfield, mem.number - 1,
(not mem.empty) and (mem.skip != 'S'))

if mem.empty:
# Set the whole memory to 0xff
_mem.set_raw('\xff' * (_mem.size() / 8))
else:
_mem.set_raw('\x00' * (_mem.size() / 8))

_mem.freq = int(mem.freq / 10)
_mem.offset = int(mem.offset / 10)

_mem.name = mem.name.ljust(5)[:5] # Store the alpha tag

# TODO support busy channel lockout - disabled for now
_mem.busy_channel_lockout = BUSY_CHANNEL_LOCKOUT_OFF

# Set duplex bitfields
if mem.duplex == '+':
_mem.duplex = DUPLEX_POSSPLIT
elif mem.duplex == '-':
_mem.duplex = DUPLEX_NEGSPLIT
elif mem.duplex == '':
_mem.duplex = DUPLEX_NOSPLIT
elif mem.duplex == 'split':
# TODO: this is an unverified punt!
_mem.duplex = DUPLEX_ODDSPLIT
else:
LOG.error('%s: set_mem: unhandled duplex: %s' %
(mem.name, mem.duplex))

# handle tx off
_mem.tx_off = 0
if mem.duplex == 'off':
_mem.tx_off = 1

# Set the channel width - remember we promote 20kHz channels to FM
# on import
# , so don't handle them here
if mem.mode == 'FM':
_mem.channel_width = CHANNEL_WIDTH_25kHz
elif mem.mode == 'NFM':
_mem.channel_width = CHANNEL_WIDTH_12d5kHz
else:
LOG.error('%s: set_mem: unhandled mode: %s' % (
mem.name, mem.mode))

# set the power level
if mem.power == POWER_LEVELS[0]:
_mem.txpower = TXPOWER_LOW
elif mem.power == POWER_LEVELS[1]:
_mem.txpower = TXPOWER_MED
elif mem.power == POWER_LEVELS[2]:
_mem.txpower = TXPOWER_HIGH
else:
LOG.error('%s: set_mem: unhandled power level: %s' %
(mem.name, mem.power))

# TODO set the CTCSS values
# TODO support custom ctcss tones here
# Default - tones off, carrier sql
_mem.ctcss_encode_en = 0
_mem.ctcss_decode_en = 0
_mem.tone_squelch_en = 0
_mem.ctcss_enc_tone = 0x00
_mem.ctcss_dec_tone = 0x00
_mem.customctcss = 0x00
_mem.dtcs_encode_en = 0
_mem.dtcs_encode_code_highbit = 0
_mem.dtcs_encode_code = 0
_mem.dtcs_encode_invert = 0
_mem.dtcs_decode_en = 0
_mem.dtcs_decode_code_highbit = 0
_mem.dtcs_decode_code = 0
_mem.dtcs_decode_invert = 0

dtcs_pol_str_to_bit = {'N': 0, 'R': 1}
_mem.dtcs_encode_invert = dtcs_pol_str_to_bit[mem.dtcs_polarity[0]]
_mem.dtcs_decode_invert = dtcs_pol_str_to_bit[mem.dtcs_polarity[1]]

if mem.tmode == 'Tone':
_mem.ctcss_encode_en = 1
_mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.rtone)
elif mem.tmode == 'TSQL':
_mem.ctcss_encode_en = 1
_mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.ctone)
_mem.ctcss_decode_en = 1
_mem.tone_squelch_en = 1
_mem.ctcss_dec_tone = ctcss_code_val_to_bits(mem.ctone)
elif mem.tmode == 'DTCS':
_mem.dtcs_encode_en = 1
_mem.dtcs_encode_code, _mem.dtcs_encode_code_highbit = \
dtcs_code_val_to_bits(mem.rx_dtcs)
_mem.dtcs_decode_en = 1
_mem.dtcs_decode_code, _mem.dtcs_decode_code_highbit = \
dtcs_code_val_to_bits(mem.rx_dtcs)
_mem.tone_squelch_en = 1
elif mem.tmode == 'Cross':
txmode, rxmode = mem.cross_mode.split('->')

if txmode == 'Tone':
_mem.ctcss_encode_en = 1
_mem.ctcss_enc_tone = ctcss_code_val_to_bits(mem.rtone)
elif txmode == '':
pass
elif txmode == 'DTCS':
_mem.dtcs_encode_en = 1
_mem.dtcs_encode_code, _mem.dtcs_encode_code_highbit = \
dtcs_code_val_to_bits(mem.dtcs)
else:
LOG.error('%s: unhandled cross TX mode: %s' % (
mem.name, mem.cross_mode))

if rxmode == 'Tone':
_mem.ctcss_decode_en = 1
_mem.tone_squelch_en = 1
_mem.ctcss_dec_tone = ctcss_code_val_to_bits(mem.ctone)
elif rxmode == '':
pass
elif rxmode == 'DTCS':
_mem.dtcs_decode_en = 1
_mem.dtcs_decode_code, _mem.dtcs_decode_code_highbit = \
dtcs_code_val_to_bits(mem.rx_dtcs)
_mem.tone_squelch_en = 1
else:
LOG.error('%s: unhandled cross RX mode: %s' % (
mem.name, mem.cross_mode))
else:
LOG.error('%s: Unhandled tmode/cross %s/%s.' %
(mem.name, mem.tmode, mem.cross_mode))
LOG.debug('%s: tmode=%s, cross=%s, rtone=%f, ctone=%f' % (
mem.name, mem.tmode, mem.cross_mode, mem.rtone, mem.ctone))
LOG.debug('%s: CENC=%d, CDEC=%d, t(enc)=%02x, t(dec)=%02x' % (
mem.name,
_mem.ctcss_encode_en,
_mem.ctcss_decode_en,
ctcss_code_val_to_bits(mem.rtone),
ctcss_code_val_to_bits(mem.ctone)))

# set unknown defaults, based on reading memory set by vendor tool
_mem.unknown1 = 0x00
_mem.unknown6 = 0x00
_mem.unknown7 = 0x00
_mem.unknown8 = 0x00
_mem.unknown9 = 0x00
_mem.unknown10 = 0x00

def get_settings(self):
"""Translate the MEM_FORMAT structs into setstuf in the UI"""
_settings = self._memobj.settings
_radio_settings = self._memobj.radio_settings
_password = self._memobj.password
_pfkeys = self._memobj.pfkeys
_dtmf = self._memobj.dtmf

# Function Setup
function = RadioSettingGroup("function", "Function Setup")
group = RadioSettings(function)

# MODE SET
# Channel Locked
rs = RadioSettingValueBoolean(_settings.channelLocked)
rset = RadioSetting("settings.channelLocked", "Channel locked", rs)
function.append(rset)

# Menu 3 - Display Mode
options = ["Frequency", "Channel", "Name"]
rs = RadioSettingValueList(options, options[_settings.displayMode])
rset = RadioSetting("settings.displayMode", "Display Mode", rs)
function.append(rset)

# VFO/MR A
options = ["MR", "VFO"]
rs = RadioSettingValueList(options, options[_radio_settings.vfomrA])
rset = RadioSetting("radio_settings.vfomrA", "VFO/MR mode A", rs)
function.append(rset)

# MR Channel A
options = ["%s" % x for x in range(1, 201)]
rs = RadioSettingValueList(options, options[_radio_settings.mrChanA])
rset = RadioSetting("radio_settings.mrChanA", "MR channel A", rs)
function.append(rset)

# VFO/MR B
options = ["MR", "VFO"]
rs = RadioSettingValueList(options, options[_radio_settings.vfomrB])
rset = RadioSetting("radio_settings.vfomrB", "VFO/MR mode B", rs)
function.append(rset)

# MR Channel B
options = ["%s" % x for x in range(1, 201)]
rs = RadioSettingValueList(options, options[_radio_settings.mrChanB])
rset = RadioSetting("radio_settings.mrChanB", "MR channel B", rs)
function.append(rset)

# DISPLAY SET
# Starting Display
name = ""
for i in range(7): # 0 - 7
name += chr(self._memobj.starting_display.line[i])
name = name.upper().rstrip() # remove trailing spaces

rs = RadioSettingValueString(0, 7, name)
rs.set_charset(chirp_common.CHARSET_ALPHANUMERIC)
rset = RadioSetting("starting_display.line", "Starting display", rs)
function.append(rset)

# Menu 11 - Backlight Brightness
options = ["%s" % x for x in range(1, 4)]
rs = RadioSettingValueList(options, options[_settings.backlightBr - 1])
rset = RadioSetting("settings.backlightBr", "Backlight brightness", rs)
function.append(rset)

# Menu 15 - Screen Direction
options = ["Positive", "Inverted"]
rs = RadioSettingValueList(options, options[_settings.screenDir])
rset = RadioSetting("settings.screenDir", "Screen direction", rs)
function.append(rset)

# Hand Mic Key Brightness
options = ["%s" % x for x in range(1, 32)]
rs = RadioSettingValueList(options, options[_settings.micKeyBrite - 1])
rset = RadioSetting("settings.micKeyBrite",
"Hand mic key brightness", rs)
function.append(rset)

# VOL SET
# Menu 1 - Beep Volume
options = ["OFF"] + ["%s" % x for x in range(1, 6)]
rs = RadioSettingValueList(options, options[_settings.beepVolume])
rset = RadioSetting("settings.beepVolume", "Beep volume", rs)
function.append(rset)

# Menu 5 - Volume level Setup
options = ["%s" % x for x in range(1, 37)]
rs = RadioSettingValueList(options, options[_settings.speakerVol - 1])
rset = RadioSetting("settings.speakerVol", "Speaker volume", rs)
function.append(rset)

# Menu 16 - Speaker Switch
options = ["Host on | Hand mic off", "Host on | Hand mic on",
"Host off | Hand mic on"]
rs = RadioSettingValueList(options, options[_settings.speakerSwitch])
rset = RadioSetting("settings.speakerSwitch", "Speaker switch", rs)
function.append(rset)

# STE SET
# STE Frequency
options = ["Off", "55.2 Hz", "259.2 Hz"]
rs = RadioSettingValueList(options, options[_settings.steFrequency])
rset = RadioSetting("settings.steFrequency", "STE frequency", rs)
function.append(rset)

# STE Type
options = ["Off", "Silent", "120 degrees", "180 degrees",
"240 degrees"]
rs = RadioSettingValueList(options, options[_settings.steType])
rset = RadioSetting("settings.steType", "STE type", rs)
function.append(rset)

# ON/OFF SET
# Power-on Password
rs = RadioSettingValueBoolean(_settings.powerOnPasswd)
rset = RadioSetting("settings.powerOnPasswd", "Power-on Password", rs)
function.append(rset)

# Password
def _char_to_str(chrx):
""" Remove ff pads from char array """
# chrx is char array
str1 = ""
for sx in chrx:
if int(sx) > 31 and int(sx) < 127:
str1 += chr(sx)
return str1

def _pswd_vfy(setting, obj, atrb):
""" Verify password is 1-6 chars, numbers 1-5 """
str1 = str(setting.value).strip() # initial
str2 = filter(lambda c: c in '0123456789', str1) # valid chars
if str1 != str2:
# Two lines due to python 73 char limit
sx = "Bad characters in Password"
raise errors.RadioError(sx)
str2 = str1.ljust(6, chr(00)) # pad to 6 with 00's
setattr(obj, atrb, str2)
return

sx = _char_to_str(_password.digits).strip()
rx = RadioSettingValueString(0, 6, sx)
sx = "Password (numerals 0-9)"
rset = RadioSetting("password.digits", sx, rx)
rset.set_apply_callback(_pswd_vfy, _password, "digits")
function.append(rset)

# Menu 9 - Auto Power On
rs = RadioSettingValueBoolean(_settings.autoPowerOn)
rset = RadioSetting("settings.autoPowerOn", "Auto power on", rs)
function.append(rset)

# Menu 13 - Auto Power Off
options = ["Off", "30 minutes", "60 minutes", "120 minutes"]
rs = RadioSettingValueList(options, options[_settings.autoPowerOff])
rset = RadioSetting("settings.autoPowerOff", "Auto power off", rs)
function.append(rset)

# Power On Reset Enable
rs = RadioSettingValueBoolean(_settings.powerOnReset)
rset = RadioSetting("settings.powerOnReset", "Power on reset", rs)
function.append(rset)

# FUNCTION SET
# Menu 4 - Squelch Level A
options = ["OFF"] + ["%s" % x for x in range(1, 10)]
rs = RadioSettingValueList(options, options[_settings.squelchLevelA])
rset = RadioSetting("settings.squelchLevelA", "Squelch level A", rs)
function.append(rset)

# Squelch Level B
options = ["OFF"] + ["%s" % x for x in range(1, 10)]
rs = RadioSettingValueList(options, options[_settings.squelchLevelB])
rset = RadioSetting("settings.squelchLevelB", "Squelch level B", rs)
function.append(rset)

# Menu 7 - Scan Type
options = ["Time operated (TO)", "Carrier operated (CO)",
"Search (SE)"]
rs = RadioSettingValueList(options, options[_settings.scanType])
rset = RadioSetting("settings.scanType", "Scan mode", rs)
function.append(rset)

# Menu 8 - Scan Recovery Time
options = ["%s seconds" % x for x in range(5, 20, 5)]
rs = RadioSettingValueList(options, options[_settings.scanRecoveryT])
rset = RadioSetting("settings.scanRecoveryT", "Scan recovery time", rs)
function.append(rset)

# Main
options = ["A", "B"]
rs = RadioSettingValueList(options, options[_settings.main])
rset = RadioSetting("settings.main", "Main", rs)
function.append(rset)

# Menu 10 - Dual Watch (RX Way Select)
rs = RadioSettingValueBoolean(_settings.dualWatch)
rset = RadioSetting("settings.dualWatch", "Dual watch", rs)
function.append(rset)

# Menu 12 - Time Out Timer
options = ["OFF"] + ["%s minutes" % x for x in range(1, 31)]
rs = RadioSettingValueList(options, options[_settings.timeOutTimer])
rset = RadioSetting("settings.timeOutTimer", "Time out timer", rs)
function.append(rset)

# TBST Frequency
options = ["1000 Hz", "1450 Hz", "1750 Hz", "2100 Hz"]
rs = RadioSettingValueList(options, options[_settings.tbstFrequency])
rset = RadioSetting("settings.tbstFrequency", "TBST frequency", rs)
function.append(rset)

# Save Channel Perameter
rs = RadioSettingValueBoolean(_settings.saveChParameter)
rset = RadioSetting("settings.saveChParameter",
"Save channel parameter", rs)
function.append(rset)

# MON Key Function
options = ["Squelch off momentary", "Squelch off"]
rs = RadioSettingValueList(options, options[_settings.monKeyFunction])
rset = RadioSetting("settings.monKeyFunction", "MON key function", rs)
function.append(rset)

# Frequency Step
options = ["2.5 KHz", "5 KHz", "6.25 KHz", "10 KHz", "12.5 KHz",
"20 KHz", "25 KHz", "30 KHz", "50 KHz"]
rs = RadioSettingValueList(options, options[_settings.frequencyStep])
rset = RadioSetting("settings.frequencyStep", "Frequency step", rs)
function.append(rset)

# Knob Mode
options = ["Volume", "Channel"]
rs = RadioSettingValueList(options, options[_settings.knobMode])
rset = RadioSetting("settings.knobMode", "Knob mode", rs)
function.append(rset)

# TRF Enable
rs = RadioSettingValueBoolean(_settings.trfEnable)
rset = RadioSetting("settings.trfEnable", "TRF enable", rs)
function.append(rset)

# Key Assignment
pfkeys = RadioSettingGroup("pfkeys", "Key Assignment")
group.append(pfkeys)

options = ["A/B", "V/M", "SQL", "VOL", "POW", "CDT", "REV", "SCN",
"CAL", "TALK", "BND", "SFT", "MON", "DIR", "TRF", "RDW",
"NULL", "unk"]

# Key Mode 1
# P1
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P1 - 1])
rset = RadioSetting("pfkeys.keyMode1P1",
"Key mode 1 P1", rs)
pfkeys.append(rset)

# P2
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P2 - 1])
rset = RadioSetting("pfkeys.keyMode1P2",
"Key mode 1 P2", rs)
pfkeys.append(rset)

# P3
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P3 - 1])
rset = RadioSetting("pfkeys.keyMode1P3",
"Key mode 1 P3", rs)
pfkeys.append(rset)

# P4
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P4 - 1])
rset = RadioSetting("pfkeys.keyMode1P4",
"Key mode 1 P4", rs)
pfkeys.append(rset)

# P5
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P5 - 1])
rset = RadioSetting("pfkeys.keyMode1P5",
"Key mode 1 P5", rs)
pfkeys.append(rset)

# P6
rs = RadioSettingValueList(options, options[_pfkeys.keyMode1P6 - 1])
rset = RadioSetting("pfkeys.keyMode1P6",
"Key mode 1 P6", rs)
pfkeys.append(rset)

# Key Mode 2
# P1
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P1 - 1])
rset = RadioSetting("pfkeys.keyMode2P1",
"Key mode 2 P1", rs)
pfkeys.append(rset)

# P2
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P2 - 1])
rset = RadioSetting("pfkeys.keyMode2P2",
"Key mode 2 P2", rs)
pfkeys.append(rset)

# P3
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P3 - 1])
rset = RadioSetting("pfkeys.keyMode2P3",
"Key mode 2 P3", rs)
pfkeys.append(rset)

# P4
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P4 - 1])
rset = RadioSetting("pfkeys.keyMode2P4",
"Key mode 2 P4", rs)
pfkeys.append(rset)

# P5
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P5 - 1])
rset = RadioSetting("pfkeys.keyMode2P5",
"Key mode 2 P5", rs)
pfkeys.append(rset)

# P6
rs = RadioSettingValueList(options, options[_pfkeys.keyMode2P6 - 1])
rset = RadioSetting("pfkeys.keyMode2P6",
"Key mode 2 P6", rs)
pfkeys.append(rset)

options = ["V/M", "SQL", "VOL", "POW", "CDT", "REV", "SCN", "CAL",
"TALK", "BND", "SFT", "MON", "DIR", "TRF", "RDW"]

# PA
rs = RadioSettingValueList(options, options[_settings.keyPA - 2])
rset = RadioSetting("settings.keyPA",
"Key PA", rs)
pfkeys.append(rset)

# PB
rs = RadioSettingValueList(options, options[_settings.keyPB - 2])
rset = RadioSetting("settings.keyPB",
"Key PB", rs)
pfkeys.append(rset)

# PC
rs = RadioSettingValueList(options, options[_settings.keyPC - 2])
rset = RadioSetting("settings.keyPC",
"Key PC", rs)
pfkeys.append(rset)

# PD
rs = RadioSettingValueList(options, options[_settings.keyPD - 2])
rset = RadioSetting("settings.keyPD",
"Key PD", rs)
pfkeys.append(rset)

# DTMF
dtmf = RadioSettingGroup("dtmf", "DTMF")
group.append(dtmf)

# DTMF Transmitting Time
options = ["50 milliseconds", "100 milliseconds", "200 milliseconds",
"300 milliseconds", "500 milliseconds"]
rs = RadioSettingValueList(options, options[_settings.dtmfTxTime])
rset = RadioSetting("settings.dtmfTxTime",
"DTMF transmitting time", rs)
dtmf.append(rset)

# DTMF Self ID

# DTMF Interval Character
IC_CHOICES = ["A", "B", "C", "D", "*", "#"]
IC_VALUES = [0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F]

def apply_ic_listvalue(setting, obj):
LOG.debug("Setting value: " + str(setting.value) + " from list")
val = str(setting.value)
index = IC_CHOICES.index(val)
val = IC_VALUES[index]
obj.set_value(val)

if _dtmf.intervalChar in IC_VALUES:
idx = IC_VALUES.index(_dtmf.intervalChar)
else:
idx = IC_VALUES.index(0x0E)
rs = RadioSetting("dtmf.intervalChar", "DTMF interval character",
RadioSettingValueList(IC_CHOICES,
IC_CHOICES[idx]))
rs.set_apply_callback(apply_ic_listvalue, _dtmf.intervalChar)
dtmf.append(rs)

# Group Code
GC_CHOICES = ["Off", "A", "B", "C", "D", "*", "#"]
GC_VALUES = [0xFF, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F]

def apply_gc_listvalue(setting, obj):
LOG.debug("Setting value: " + str(setting.value) + " from list")
val = str(setting.value)
index = GC_CHOICES.index(val)
val = GC_VALUES[index]
obj.set_value(val)

if _dtmf.groupCode in GC_VALUES:
idx = GC_VALUES.index(_dtmf.groupCode)
else:
idx = GC_VALUES.index(0x0A)
rs = RadioSetting("dtmf.groupCode", "DTMF interval character",
RadioSettingValueList(GC_CHOICES,
GC_CHOICES[idx]))
rs.set_apply_callback(apply_gc_listvalue, _dtmf.groupCode)
dtmf.append(rs)

# Decoding Response
options = ["None", "Beep tone", "Beep tone & respond"]
rs = RadioSettingValueList(options, options[_dtmf.decodingResponse])
rset = RadioSetting("dtmf.decodingResponse", "Decoding response", rs)
dtmf.append(rset)

# First Digit Time
options = ["%s" % x for x in range(0, 2510, 10)]
rs = RadioSettingValueList(options, options[_dtmf.firstDigitTime])
rset = RadioSetting("dtmf.firstDigitTime", "First Digit Time(ms)", rs)
dtmf.append(rset)

# First Digit Time
options = ["%s" % x for x in range(10, 2510, 10)]
rs = RadioSettingValueList(options, options[_dtmf.pretime - 1])
rset = RadioSetting("dtmf.pretime", "Pretime(ms)", rs)
dtmf.append(rset)

# Auto Reset Time
options = ["%s" % x for x in range(0, 25100, 100)]
rs = RadioSettingValueList(options, options[_dtmf.autoResetTime])
rset = RadioSetting("dtmf.autoResetTime", "Auto Reset time(ms)", rs)
dtmf.append(rset)

# Time-Lapse After Encode
options = ["%s" % x for x in range(10, 2510, 10)]
rs = RadioSettingValueList(options, options[_dtmf.timeLapse - 1])
rset = RadioSetting("dtmf.timeLapse",
"Time-lapse after encode(ms)", rs)
dtmf.append(rset)

# PTT ID Pause Time
options = ["Off", "-", "-", "-", "-"] + [
"%s" % x for x in range(5, 76)]
rs = RadioSettingValueList(options, options[_dtmf.pauseTime])
rset = RadioSetting("dtmf.pauseTime", "PTT ID pause time(s)", rs)
dtmf.append(rset)

# Side Tone
rs = RadioSettingValueBoolean(_dtmf.sideTone)
rset = RadioSetting("dtmf.sideTone", "Side tone", rs)
dtmf.append(rset)

# PTT ID Starting
DTMF_CHARS = "0123456789ABCD*# "
_codeobj = _dtmf.pttIdStart
_code = "".join([DTMF_CHARS[x] for x in _codeobj if int(x) < 0x1F])
val = RadioSettingValueString(0, 16, _code, False)
val.set_charset(DTMF_CHARS)
rs = RadioSetting("dtmf.pttIdStart", "PTT ID starting", val)

def apply_code(setting, obj):
code = []
for j in range(0, 16):
try:
code.append(DTMF_CHARS.index(str(setting.value)[j]))
except IndexError:
code.append(0xFF)
obj.pttIdStart = code
rs.set_apply_callback(apply_code, _dtmf)
dtmf.append(rs)

# PTT ID Ending
_codeobj = _dtmf.pttIdEnd
_code = "".join([DTMF_CHARS[x] for x in _codeobj if int(x) < 0x1F])
val = RadioSettingValueString(0, 16, _code, False)
val.set_charset(DTMF_CHARS)
rs = RadioSetting("dtmf.pttIdEnd", "PTT ID ending", val)

def apply_code(setting, obj):
code = []
for j in range(0, 16):
try:
code.append(DTMF_CHARS.index(str(setting.value)[j]))
except IndexError:
code.append(0xFF)
obj.pttIdEnd = code
rs.set_apply_callback(apply_code, _dtmf)
dtmf.append(rs)

# Remotely Kill
_codeobj = _dtmf.remoteKill
_code = "".join([DTMF_CHARS[x] for x in _codeobj if int(x) < 0x1F])
val = RadioSettingValueString(0, 16, _code, False)
val.set_charset(DTMF_CHARS)
rs = RadioSetting("dtmf.remoteKill", "Remotely kill", val)

def apply_code(setting, obj):
code = []
for j in range(0, 16):
try:
code.append(DTMF_CHARS.index(str(setting.value)[j]))
except IndexError:
code.append(0xFF)
obj.remoteKill = code
rs.set_apply_callback(apply_code, _dtmf)
dtmf.append(rs)

# Remotely Stun
_codeobj = _dtmf.remoteStun
_code = "".join([DTMF_CHARS[x] for x in _codeobj if int(x) < 0x1F])
val = RadioSettingValueString(0, 16, _code, False)
val.set_charset(DTMF_CHARS)
rs = RadioSetting("dtmf.remoteStun", "Remotely stun", val)

def apply_code(setting, obj):
code = []
for j in range(0, 16):
try:
code.append(DTMF_CHARS.index(str(setting.value)[j]))
except IndexError:
code.append(0xFF)
obj.remoteStun = code
rs.set_apply_callback(apply_code, _dtmf)
dtmf.append(rs)

# DTMF Encode
# M1 - M16
for i in range(0, 16):
_codeobj = self._memobj.pttid[i].code
_code = "".join([DTMF_CHARS[x] for x in _codeobj if int(x) < 0x1F])
val = RadioSettingValueString(0, 16, _code, False)
val.set_charset(DTMF_CHARS)
rs = RadioSetting("pttid/%i.code" % i,
"DTMF encode M%i" % (i + 1), val)

def apply_code(setting, obj):
code = []
for j in range(0, 16):
try:
code.append(DTMF_CHARS.index(str(setting.value)[j]))
except IndexError:
code.append(0xFF)
obj.code = code
rs.set_apply_callback(apply_code, self._memobj.pttid[i])
dtmf.append(rs)

return group

def set_settings(self, settings):
_settings = self._memobj.settings
_mem = self._memobj
for element in settings:
if not isinstance(element, RadioSetting):
self.set_settings(element)
continue
else:
try:
name = element.get_name()
if "." in name:
bits = name.split(".")
obj = self._memobj
for bit in bits[:-1]:
if "/" in bit:
bit, index = bit.split("/", 1)
index = int(index)
obj = getattr(obj, bit)[index]
else:
obj = getattr(obj, bit)
setting = bits[-1]
else:
obj = _settings
setting = element.get_name()

if element.has_apply_callback():
LOG.debug("Using apply callback")
element.run_apply_callback()
elif setting == "timeLapse":
setattr(obj, setting, int(element.value) + 1)
elif setting == "pretime":
setattr(obj, setting, int(element.value) + 1)
elif setting == "backlightBr":
setattr(obj, setting, int(element.value) + 1)
elif setting == "micKeyBrite":
setattr(obj, setting, int(element.value) + 1)
elif setting == "speakerVol":
setattr(obj, setting, int(element.value) + 1)
elif "keyMode" in setting:
setattr(obj, setting, int(element.value) + 1)
elif "keyP" in setting:
setattr(obj, setting, int(element.value) + 2)
elif element.value.get_mutable():
LOG.debug("Setting %s = %s" % (setting, element.value))
setattr(obj, setting, element.value)
except Exception, e:
LOG.debug(element.get_name())
raise

if has_future:
@directory.register
class AnyTone778UV(AnyTone778UVBase):
VENDOR = "AnyTone"
MODEL = "778UV"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'AT778UV': ['V100', 'V200']}

@directory.register
class RetevisRT95(AnyTone778UVBase):
VENDOR = "Retevis"
MODEL = "RT95"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'RT95': ['V100']}

@directory.register
class CRTMicronUV(AnyTone778UVBase):
VENDOR = "CRT"
MODEL = "Micron UV"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'MICRON': ['V100']}

@directory.register
class MidlandDBR2500(AnyTone778UVBase):
VENDOR = "Midland"
MODEL = "DBR2500"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'DBR2500': ['V100']}

@directory.register
class YedroYCM04vus(AnyTone778UVBase):
VENDOR = "Yedro"
MODEL = "YC-M04VUS"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'YCM04UV': ['V100']}

@directory.register
class RetevisRT95P(AnyTone778UVBase):
VENDOR = "Retevis"
MODEL = "RT95-P"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'RT95-P': ['V100']}

@directory.register
class AnyTone778UVP(AnyTone778UVBase):
VENDOR = "AnyTone"
MODEL = "778UV-P"
# Allowed radio types is a dict keyed by model of a list of version
# strings
ALLOWED_RADIO_TYPES = {'I778UV-P': ['V100']}
(5-5/16)