|
# Copyright 2017 Pavel Milanes, CO7WT, <pavelmc@gmail.com>
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import time
|
|
import struct
|
|
import logging
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
from time import sleep
|
|
from chirp import chirp_common, directory, memmap
|
|
from chirp import bitwise, errors, util
|
|
from chirp.settings import RadioSetting, RadioSettingGroup, \
|
|
RadioSettingValueBoolean, RadioSettingValueList, \
|
|
RadioSettingValueInteger, RadioSettingValueString, \
|
|
RadioSettingValueFloat, RadioSettings
|
|
from textwrap import dedent
|
|
|
|
# A note about the memmory in these radios
|
|
# mainly speculation until proven otherwise:
|
|
#
|
|
# The '9100' OEM software only manipulates the lower 0x180 bytes on read/write
|
|
# operations as we know, the file generated by the OEM software IN NOT an exact
|
|
# eeprom image, it's a crude text file with a pseudo csv format
|
|
|
|
MEM_SIZE = 0x180 # 384 bytes
|
|
BLOCK_SIZE = 0x10
|
|
ACK_CMD = "\x06"
|
|
MODES = ["NFM", "FM"]
|
|
SKIP_VALUES = ["S", ""]
|
|
TONES = chirp_common.TONES
|
|
DTCS = sorted(chirp_common.DTCS_CODES + [645])
|
|
|
|
# This is a general serial timeout for all serial read functions.
|
|
# Practice has show that about 0.07 sec will be enough to cover all radios.
|
|
STIMEOUT = 0.07
|
|
|
|
# this var controls the verbosity in the debug and by default it's low (False)
|
|
# make it True and you will to get a very verbose debug.log
|
|
debug = True
|
|
|
|
##### ID strings #####################################################
|
|
|
|
# BF-T1 handheld
|
|
BFT1_magic = "\x05PROGRAM"
|
|
BFT1_ident = " BF9100S"
|
|
|
|
|
|
def _clean_buffer(radio):
|
|
"""Cleaning the read serial buffer, hard timeout to survive an infinite
|
|
data stream"""
|
|
|
|
dump = "1"
|
|
datacount = 0
|
|
|
|
try:
|
|
while len(dump) > 0:
|
|
dump = radio.pipe.read(100)
|
|
datacount += len(dump)
|
|
# hard limit to survive a infinite serial data stream
|
|
# 5 times bigger than a normal rx block (20 bytes)
|
|
if datacount > 101:
|
|
seriale = "Please check your serial port selection."
|
|
raise errors.RadioError(seriale)
|
|
|
|
except Exception:
|
|
raise errors.RadioError("Unknown error cleaning the serial buffer")
|
|
|
|
|
|
def _rawrecv(radio, amount = 0):
|
|
"""Raw read from the radio device"""
|
|
|
|
# var to hold the data to return
|
|
data = ""
|
|
|
|
try:
|
|
if amount == 0:
|
|
data = radio.pipe.read()
|
|
else:
|
|
data = radio.pipe.read(amount)
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("<== (%d) bytes:\n\n%s" %
|
|
(len(data), util.hexprint(data)))
|
|
|
|
# fail if no data is received
|
|
if len(data) == 0:
|
|
raise errors.RadioError("No data received from radio")
|
|
|
|
except:
|
|
raise errors.RadioError("Error reading data from radio")
|
|
|
|
return data
|
|
|
|
|
|
def _send(radio, data):
|
|
"""Send data to the radio device"""
|
|
|
|
try:
|
|
radio.pipe.write(data)
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("==> (%d) bytes:\n\n%s" %
|
|
(len(data), util.hexprint(data)))
|
|
except:
|
|
raise errors.RadioError("Error sending data to radio")
|
|
|
|
|
|
def _make_frame(cmd, addr, data=""):
|
|
"""Pack the info in the header format"""
|
|
frame = struct.pack(">BHB", ord(cmd), addr, BLOCK_SIZE)
|
|
|
|
# add the data if set
|
|
if len(data) != 0:
|
|
frame += data
|
|
|
|
return frame
|
|
|
|
|
|
def _recv(radio, addr):
|
|
"""Get data from the radio"""
|
|
|
|
# Get the full 20 bytes at a time
|
|
# 4 bytes header + 16 bytes of data (BLOCK_SIZE)
|
|
|
|
# get the whole block
|
|
block = _rawrecv(radio, BLOCK_SIZE + 4)
|
|
|
|
# short answer
|
|
if len(block) < (BLOCK_SIZE + 4):
|
|
raise errors.RadioError("Wrong block length (short) at 0x%04x" % addr)
|
|
|
|
# long answer
|
|
if len(block) > (BLOCK_SIZE + 4):
|
|
raise errors.RadioError("Wrong block length (long) at 0x%04x" % addr)
|
|
|
|
|
|
# header validation
|
|
c, a, l = struct.unpack(">cHB", block[0:4])
|
|
if c != "W" or a != addr or l != BLOCK_SIZE:
|
|
LOG.debug("Invalid header for block 0x%04x:" % addr)
|
|
LOG.debug("CMD: %s ADDR: %04x SIZE: %02x" % (c, a, l))
|
|
raise errors.RadioError("Invalid header for block 0x%04x:" % addr)
|
|
|
|
# return the data, 16 bytes of payload
|
|
return block[4:]
|
|
|
|
|
|
def _start_clone_mode(radio, status):
|
|
"""Put the radio in clone mode, 3 tries"""
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
# prep the data to show in the UI
|
|
status.cur = 0
|
|
status.msg = "Identifying the radio..."
|
|
status.max = 3
|
|
radio.status_fn(status)
|
|
|
|
try:
|
|
for a in range(0, status.max):
|
|
# Update the UI
|
|
status.cur = a + 1
|
|
radio.status_fn(status)
|
|
|
|
# send the magic word
|
|
_send(radio, radio._magic)
|
|
|
|
# Now you get a x06 of ACK if all goes well
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
if ack == ACK_CMD:
|
|
# DEBUG
|
|
LOG.info("Magic ACK received")
|
|
status.cur = status.max
|
|
radio.status_fn(status)
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
except errors.RadioError:
|
|
raise
|
|
except Exception, e:
|
|
raise errors.RadioError("Error sending Magic to radio:\n%s" % e)
|
|
|
|
|
|
def _do_ident(radio, status):
|
|
"""Put the radio in PROGRAM mode & identify it"""
|
|
# set the serial discipline (default)
|
|
radio.pipe.baudrate = 9600
|
|
radio.pipe.parity = "N"
|
|
radio.pipe.bytesize = 8
|
|
radio.pipe.stopbits = 1
|
|
radio.pipe.timeout = STIMEOUT
|
|
|
|
# open the radio into program mode
|
|
if _start_clone_mode(radio, status) is False:
|
|
raise errors.RadioError("Radio did not enter clone mode, wrong model?")
|
|
|
|
# Ok, poke it to get the ident string
|
|
_send(radio, "\x02")
|
|
ident = _rawrecv(radio, len(radio._id))
|
|
|
|
# basic check for the ident
|
|
if len(ident) != len(radio._id):
|
|
raise errors.RadioError("Radio send a odd identification block.")
|
|
|
|
# check if ident is OK
|
|
if ident != radio._id:
|
|
LOG.debug("Incorrect model ID, got this:\n\n" + util.hexprint(ident))
|
|
raise errors.RadioError("Radio identification failed.")
|
|
|
|
# handshake
|
|
_send(radio, ACK_CMD)
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
#checking handshake
|
|
if len(ack) == 1 and ack == ACK_CMD:
|
|
# DEBUG
|
|
LOG.info("ID ACK received")
|
|
else:
|
|
LOG.debug("Radio handshake failed.")
|
|
raise errors.RadioError("Radio handshake failed.")
|
|
|
|
# DEBUG
|
|
LOG.info("Positive ident, this is a %s %s" % (radio.VENDOR, radio.MODEL))
|
|
|
|
return True
|
|
|
|
|
|
def _download(radio):
|
|
"""Get the memory map"""
|
|
|
|
# UI progress
|
|
status = chirp_common.Status()
|
|
|
|
# put radio in program mode and identify it
|
|
_do_ident(radio, status)
|
|
|
|
# reset the progress bar in the UI
|
|
status.max = MEM_SIZE / BLOCK_SIZE
|
|
status.msg = "Cloning from radio..."
|
|
status.cur = 0
|
|
radio.status_fn(status)
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
data = ""
|
|
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
|
|
# sending the read request
|
|
_send(radio, _make_frame("R", addr))
|
|
|
|
# read
|
|
d = _recv(radio, addr)
|
|
|
|
# aggregate the data
|
|
data += d
|
|
|
|
# UI Update
|
|
status.cur = addr / BLOCK_SIZE
|
|
status.msg = "Cloning from radio..."
|
|
radio.status_fn(status)
|
|
|
|
# close comms with the radio
|
|
_send(radio, "\x62")
|
|
# DEBUG
|
|
LOG.info("Close comms cmd sent, radio must reboot now.")
|
|
|
|
return data
|
|
|
|
|
|
def _upload(radio):
|
|
"""Upload procedure"""
|
|
|
|
# UI progress
|
|
status = chirp_common.Status()
|
|
|
|
# put radio in program mode and identify it
|
|
_do_ident(radio, status)
|
|
|
|
# get the data to upload to radio
|
|
data = radio.get_mmap()
|
|
|
|
# Reset the UI progress
|
|
status.max = MEM_SIZE / BLOCK_SIZE
|
|
status.cur = 0
|
|
status.msg = "Cloning to radio..."
|
|
radio.status_fn(status)
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
# the fun start here
|
|
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
|
|
# getting the block of data to send
|
|
d = data[addr:addr + BLOCK_SIZE]
|
|
|
|
# build the frame to send
|
|
frame = _make_frame("W", addr, d)
|
|
|
|
# send the frame
|
|
_send(radio, frame)
|
|
|
|
# receiving the response
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
# basic check
|
|
if len(ack) != 1:
|
|
raise errors.RadioError("No ACK when writing block 0x%04x" % addr)
|
|
|
|
if ack != ACK_CMD:
|
|
raise errors.RadioError("Bad ACK writing block 0x%04x:" % addr)
|
|
|
|
# UI Update
|
|
status.cur = addr / BLOCK_SIZE
|
|
status.msg = "Cloning to radio..."
|
|
radio.status_fn(status)
|
|
|
|
# close comms with the radio
|
|
_send(radio, "\x62")
|
|
# DEBUG
|
|
LOG.info("Close comms cmd sent, radio must reboot now.")
|
|
|
|
|
|
def _model_match(cls, data):
|
|
"""Match the opened/downloaded image to the correct version"""
|
|
|
|
# we don't have a reliable fingerprint in the mem space by now.
|
|
# then we just aim for a specific zone filled with \xff
|
|
rid = data[0x0158:0x0160]
|
|
|
|
if rid == ("\xff" * 8):
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def _decode_ranges(low, high):
|
|
"""Unpack the data in the ranges zones in the memmap and return
|
|
a tuple with the integer corresponding to the Mhz it means"""
|
|
return (int(low) * 100000, int(high) * 100000)
|
|
|
|
|
|
MEM_FORMAT = """
|
|
#seekto 0x0000; // normal 1-20 mem channels
|
|
// channel 0 is Emergent CH
|
|
struct {
|
|
lbcd rxfreq[4]; // rx freq.
|
|
u8 rxtone; // x00 = none
|
|
// x01 - x32 = index of the analog tones
|
|
// x33 - x9b = index of Digital tones
|
|
// Digital tone polarity is handled below
|
|
lbcd txoffset[4]; // the difference against RX
|
|
// pending to find the offset polarity in settings
|
|
u8 txtone; // Idem to rxtone
|
|
u8 noskip:1, // if true is included in the scan
|
|
wide:1, // 1 = Wide, 0 = Narrow
|
|
ttondinv:1, // if true TX tone is Digital & Inverted
|
|
unA:1, //
|
|
rtondinv:1, // if true RX tone is Digital & Inverted
|
|
unB:1, //
|
|
offplus:1, // TX = RX + offset
|
|
offminus:1; // TX = RX - offset
|
|
u8 empty[5];
|
|
} memory[21];
|
|
|
|
#seekto 0x0150; // Unknown data... settings?
|
|
struct {
|
|
lbcd vhfl[2]; // VHF low limit
|
|
lbcd vhfh[2]; // VHF high limit
|
|
lbcd uhfl[2]; // UHF low limit
|
|
lbcd uhfh[2]; // UHF high limit
|
|
u8 finger[8]; // can we use this as fingerprint "\xFF" * 16
|
|
u8 unk0;
|
|
u8 unk1;
|
|
u8 squelch;
|
|
u8 vox;
|
|
u8 timeout;
|
|
u8 batsave:1,
|
|
fm_funct:1,
|
|
ste:1,
|
|
blo:1,
|
|
beep:1,
|
|
lock:1,
|
|
backlight:2;
|
|
u8 scantype;
|
|
u8 channel;
|
|
u8 fmrange;
|
|
u8 alarm;
|
|
u8 voice;
|
|
u8 volume;
|
|
u16 fmvfo;
|
|
u8 relaym;
|
|
u8 tx_pwr;
|
|
} settings;
|
|
|
|
#seekto 0x0170; // Relay CH: same structure of memory ?
|
|
struct {
|
|
lbcd rxfreq[4]; // rx freq.
|
|
u8 rxtone; // x00 = none
|
|
// x01 - x32 = index of the analog tones
|
|
// x33 - x9b = index of Digital tones
|
|
// Digital tone polarity is handled below
|
|
lbcd txoffset[4]; // the difference against RX
|
|
// pending to find the offset polarity in settings
|
|
u8 txtone; // Idem to rxtone
|
|
u8 noskip:1, // if true is included in the scan
|
|
wide:1, // 1 = Wide, 0 = Narrow
|
|
ttondinv:1, // if true TX tone is Digital & Inverted
|
|
unC:1, //
|
|
rtondinv:1, // if true RX tone is Digital & Inverted
|
|
unD:1, //
|
|
offplus:1, // TX = RX + offset
|
|
offminus:1; // TX = RX - offset
|
|
u8 empty[5];
|
|
} relaych;
|
|
|
|
"""
|
|
|
|
|
|
@directory.register
|
|
class BFT1(chirp_common.CloneModeRadio, chirp_common.ExperimentalRadio):
|
|
"""Baofeng BT-F1 radio & possibly alike radios"""
|
|
VENDOR = "Baofeng"
|
|
MODEL = "BF-T1"
|
|
_vhf_range = (136000000, 174000000)
|
|
_uhf_range = (400000000, 470000000)
|
|
_upper = 20
|
|
_magic = BFT1_magic
|
|
_id = BFT1_ident
|
|
|
|
@classmethod
|
|
def get_prompts(cls):
|
|
rp = chirp_common.RadioPrompts()
|
|
rp.experimental = \
|
|
('This driver is experimental.\n'
|
|
'\n'
|
|
'Please keep a copy of your memories with the original software '
|
|
'if you treasure them, this driver is new and may contain'
|
|
' bugs.\n'
|
|
'\n'
|
|
'Channel Zero is "Emergent CH", "Relay CH" is not implemented yet,'
|
|
'FM VFO and Limits are still missing in settings tab.'
|
|
)
|
|
rp.pre_download = _(dedent("""\
|
|
Follow these instructions to download your info:
|
|
|
|
1 - Turn off your radio
|
|
2 - Connect your interface cable
|
|
3 - Turn on your radio
|
|
4 - Do the download of your radio data
|
|
|
|
"""))
|
|
rp.pre_upload = _(dedent("""\
|
|
Follow these instructions to upload your info:
|
|
|
|
1 - Turn off your radio
|
|
2 - Connect your interface cable
|
|
3 - Turn on your radio
|
|
4 - Do the upload of your radio data
|
|
|
|
"""))
|
|
return rp
|
|
|
|
def get_features(self):
|
|
"""Get the radio's features"""
|
|
|
|
rf = chirp_common.RadioFeatures()
|
|
rf.has_settings = True
|
|
rf.has_bank = False
|
|
rf.has_tuning_step = False
|
|
rf.can_odd_split = True
|
|
rf.has_name = False
|
|
rf.has_offset = True
|
|
rf.has_mode = True
|
|
rf.valid_modes = MODES
|
|
rf.has_dtcs = True
|
|
rf.has_rx_dtcs = True
|
|
rf.has_dtcs_polarity = True
|
|
rf.has_ctone = True
|
|
rf.has_cross = True
|
|
rf.valid_duplexes = ["", "-", "+", "split"]
|
|
rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
|
|
rf.valid_cross_modes = [
|
|
"Tone->Tone",
|
|
"DTCS->",
|
|
"->DTCS",
|
|
"Tone->DTCS",
|
|
"DTCS->Tone",
|
|
"->Tone",
|
|
"DTCS->DTCS"]
|
|
rf.valid_skips = SKIP_VALUES
|
|
rf.valid_dtcs_codes = DTCS
|
|
rf.memory_bounds = (0, self._upper)
|
|
|
|
# normal dual bands
|
|
rf.valid_bands = [self._vhf_range, self._uhf_range]
|
|
|
|
return rf
|
|
|
|
def process_mmap(self):
|
|
"""Process the mem map into the mem object"""
|
|
|
|
# Get it
|
|
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)
|
|
|
|
# set the band limits as the memmap
|
|
settings = self._memobj.settings
|
|
self._vhf_range = _decode_ranges(settings.vhfl, settings.vhfh)
|
|
self._uhf_range = _decode_ranges(settings.uhfl, settings.uhfh)
|
|
|
|
def sync_in(self):
|
|
"""Download from radio"""
|
|
data = _download(self)
|
|
self._mmap = memmap.MemoryMap(data)
|
|
self.process_mmap()
|
|
|
|
def sync_out(self):
|
|
"""Upload to radio"""
|
|
|
|
try:
|
|
_upload(self)
|
|
except errors.RadioError:
|
|
raise
|
|
except Exception, e:
|
|
raise errors.RadioError("Error: %s" % e)
|
|
|
|
def _decode_tone(self, val, inv):
|
|
"""Parse the tone data to decode from mem, it returns:
|
|
Mode (''|DTCS|Tone), Value (None|###), Polarity (None,N,R)"""
|
|
|
|
if val == 0:
|
|
return '', None, None
|
|
elif val < 51: # analog tone
|
|
return 'Tone', TONES[val - 1], None
|
|
elif val > 50: # digital tone
|
|
pol = "N"
|
|
# polarity?
|
|
if inv == 1:
|
|
pol = "R"
|
|
|
|
return 'DTCS', DTCS[val - 51], pol
|
|
|
|
def _encode_tone(self, memtone, meminv, mode, tone, pol):
|
|
"""Parse the tone data to encode from UI to mem"""
|
|
|
|
if mode == '' or mode is None:
|
|
memtone.set_value(0)
|
|
meminv.set_value(0)
|
|
elif mode == 'Tone':
|
|
# caching errors for analog tones.
|
|
try:
|
|
memtone.set_value(TONES.index(tone) + 1)
|
|
meminv.set_value(0)
|
|
except:
|
|
msg = "TCSS Tone '%d' is not supported" % tone
|
|
LOG.error(msg)
|
|
raise errors.RadioError(msg)
|
|
|
|
elif mode == 'DTCS':
|
|
# caching errors for digital tones.
|
|
try:
|
|
memtone.set_value(DTCS.index(tone) + 51)
|
|
if pol == "R":
|
|
meminv.set_value(True)
|
|
else:
|
|
meminv.set_value(False)
|
|
except:
|
|
msg = "Digital Tone '%d' is not supported" % tone
|
|
LOG.error(msg)
|
|
raise errors.RadioError(msg)
|
|
else:
|
|
msg = "Internal error: invalid mode '%s'" % mode
|
|
LOG.error(msg)
|
|
raise errors.InvalidDataError(msg)
|
|
|
|
def get_raw_memory(self, number):
|
|
return repr(self._memobj.memory[number])
|
|
|
|
def get_memory(self, number):
|
|
"""Get the mem representation from the radio image"""
|
|
_mem = self._memobj.memory[number]
|
|
|
|
# Create a high-level memory object to return to the UI
|
|
mem = chirp_common.Memory()
|
|
|
|
# Memory number
|
|
mem.number = number
|
|
|
|
if _mem.get_raw()[0] == "\xFF":
|
|
mem.empty = True
|
|
return mem
|
|
|
|
# Freq and offset
|
|
mem.freq = int(_mem.rxfreq) * 10
|
|
|
|
# TX freq (Stored as a difference)
|
|
mem.offset = int(_mem.txoffset) * 10
|
|
mem.duplex = ""
|
|
|
|
# must work out the polarity
|
|
if mem.offset != 0:
|
|
if _mem.offminus == 1:
|
|
mem.duplex = "-"
|
|
# tx below RX
|
|
|
|
if _mem.offplus == 1:
|
|
# tx above RX
|
|
mem.duplex = "+"
|
|
|
|
# split RX/TX in different bands
|
|
if mem.offset > 71000000:
|
|
mem.duplex = "split"
|
|
|
|
# show the actual value in the offset, depending on the shift
|
|
if _mem.offminus == 1:
|
|
mem.offset = mem.freq - mem.offset
|
|
if _mem.offplus == 1:
|
|
mem.offset = mem.freq + mem.offset
|
|
|
|
# wide/narrow
|
|
mem.mode = MODES[int(_mem.wide)]
|
|
|
|
# skip
|
|
mem.skip = SKIP_VALUES[_mem.noskip]
|
|
|
|
# tone data
|
|
rxtone = txtone = None
|
|
txtone = self._decode_tone(_mem.txtone, _mem.ttondinv)
|
|
rxtone = self._decode_tone(_mem.rxtone, _mem.rtondinv)
|
|
chirp_common.split_tone_decode(mem, txtone, rxtone)
|
|
|
|
|
|
return mem
|
|
|
|
def set_memory(self, mem):
|
|
"""Set the memory data in the eeprom img from the UI"""
|
|
# get the eprom representation of this channel
|
|
_mem = self._memobj.memory[mem.number]
|
|
|
|
# if empty memmory
|
|
if mem.empty:
|
|
# the channel itself
|
|
_mem.set_raw("\xFF" * 16)
|
|
# return it
|
|
return mem
|
|
|
|
# frequency
|
|
_mem.rxfreq = mem.freq / 10
|
|
|
|
# duplex/ offset Offset is an absolute value
|
|
_mem.txoffset = mem.offset / 10
|
|
|
|
# must work out the polarity
|
|
if mem.duplex == "":
|
|
_mem.offplus = 0
|
|
_mem.offminus = 0
|
|
elif mem.duplex == "+":
|
|
_mem.offplus = 1
|
|
_mem.offminus = 0
|
|
elif mem.duplex == "-":
|
|
_mem.offplus = 0
|
|
_mem.offminus = 1
|
|
elif mem.duplex == "split":
|
|
if mem.freq > mem.offset:
|
|
_mem.offplus = 0
|
|
_mem.offminus = 1
|
|
_mem.txoffset = (mem.freq - mem.offset) / 10
|
|
else:
|
|
_mem.offplus = 1
|
|
_mem.offminus = 0
|
|
_mem.txoffset = (mem.offset - mem.freq) / 10
|
|
|
|
# wide/narrow
|
|
_mem.wide = MODES.index(mem.mode)
|
|
|
|
# skip
|
|
_mem.noskip = SKIP_VALUES.index(mem.skip)
|
|
|
|
# tone data
|
|
((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
|
|
chirp_common.split_tone_encode(mem)
|
|
self._encode_tone(_mem.txtone, _mem.ttondinv, txmode, txtone, txpol)
|
|
self._encode_tone(_mem.rxtone, _mem.rtondinv, rxmode, rxtone, rxpol)
|
|
|
|
return mem
|
|
# added this
|
|
def get_settings(self):
|
|
_settings = self._memobj.settings
|
|
basic = RadioSettingGroup("basic", "Basic Settings")
|
|
fm = RadioSettingGroup("fm", "FM Radio")
|
|
|
|
group = RadioSettings(basic, fm)
|
|
|
|
rs = RadioSetting("channel", "Current Channel",
|
|
RadioSettingValueInteger(1, 20, _settings.channel))
|
|
basic.append(rs)
|
|
|
|
options = ["0.5 Watt", "1.0 Watt"]
|
|
rs = RadioSetting("tx_pwr", "TX Power",
|
|
RadioSettingValueList(options,
|
|
options[_settings.tx_pwr]))
|
|
basic.append(rs)
|
|
|
|
if _settings.volume > 8:
|
|
_settings.volume = 8
|
|
rs = RadioSetting("volume", "Volume Level",
|
|
RadioSettingValueInteger(0, 9, _settings.volume))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("vox", "VOX Level",
|
|
RadioSettingValueInteger(0, 9, _settings.vox))
|
|
basic.append(rs)
|
|
|
|
options = ["Off"] + ["%s sec" % (x*30) for x in range(1, 7)]
|
|
rs = RadioSetting("timeout", "Time Out Timer",
|
|
RadioSettingValueList(
|
|
options, options[_settings.timeout]))
|
|
basic.append(rs)
|
|
|
|
options = ["Time", "Carrier", "Search"]
|
|
rs = RadioSetting("scantype", "Scan Type",
|
|
RadioSettingValueList(options,
|
|
options[_settings.scantype]))
|
|
basic.append(rs)
|
|
|
|
options = ["Off"] + ["%s h" % (x*0.5) for x in range(1, 17)]
|
|
rs = RadioSetting("alarm", "Alarm Time",
|
|
RadioSettingValueList(
|
|
options, options[_settings.alarm]))
|
|
basic.append(rs)
|
|
|
|
options = ["Off","English", "Chinese"]
|
|
rs = RadioSetting("voice", "Voice Prompt",
|
|
RadioSettingValueList(options,
|
|
options[_settings.voice]))
|
|
basic.append(rs)
|
|
|
|
options = ["Off", "RX sync", "TX sync"]
|
|
rs = RadioSetting("relaym", "Relay Mode",
|
|
RadioSettingValueList(options,
|
|
options[_settings.relaym]))
|
|
basic.append(rs)
|
|
|
|
options = ["Off", "Key", "On"]
|
|
rs = RadioSetting("backlight", "Backlight",
|
|
RadioSettingValueList(options,
|
|
options[_settings.backlight]))
|
|
basic.append(rs)
|
|
|
|
|
|
|
|
rs = RadioSetting("lock", "Key Lock",
|
|
RadioSettingValueBoolean(_settings.lock))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("beep", "Key Beep",
|
|
RadioSettingValueBoolean(_settings.beep))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("blo", "Busy Lockout",
|
|
RadioSettingValueBoolean(_settings.blo))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("ste", "Squelch Tail Eliminate",
|
|
RadioSettingValueBoolean(_settings.ste))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("batsave", "Battery Save",
|
|
RadioSettingValueBoolean(_settings.batsave))
|
|
basic.append(rs)
|
|
|
|
rs = RadioSetting("fm_funct", "FM Function",
|
|
RadioSettingValueBoolean(_settings.fm_funct))
|
|
fm.append(rs)
|
|
|
|
options = ["76-108", "65-76"]
|
|
rs = RadioSetting("fmrange", "FM Range",
|
|
RadioSettingValueList(options,
|
|
options[_settings.fmrange]))
|
|
fm.append(rs)
|
|
|
|
fmset = _settings.fmvfo / 10.0 + 65.0
|
|
rs = RadioSetting("fmvfo", "FM VFO",
|
|
RadioSettingValueFloat(65, 108, fmset, 0.1, 1))
|
|
def apply_fmset(setting,obj):
|
|
val = setting.value.get_value()
|
|
value = int(val * 10 - 650)
|
|
obj.fmvfo = value
|
|
rs.set_apply_callback(apply_fmset,self._memobj.settings)
|
|
fm.append(rs)
|
|
|
|
return group
|
|
|
|
def set_settings(self, settings):
|
|
_settings = self._memobj.settings
|
|
for element in settings:
|
|
if not isinstance(element, RadioSetting):
|
|
self.set_settings(element)
|
|
continue
|
|
else:
|
|
try:
|
|
name = element.get_name()
|
|
if "." in name:
|
|
bits = name.split(".")
|
|
obj = self._memobj
|
|
for bit in bits[:-1]:
|
|
if "/" in bit:
|
|
bit, index = bit.split("/", 1)
|
|
index = int(index)
|
|
obj = getattr(obj, bit)[index]
|
|
else:
|
|
obj = getattr(obj, bit)
|
|
setting = bits[-1]
|
|
else:
|
|
obj = _settings
|
|
setting = element.get_name()
|
|
|
|
if element.has_apply_callback():
|
|
LOG.debug("Using apply callback")
|
|
element.run_apply_callback()
|
|
elif setting == "beep_tone_disabled":
|
|
setattr(obj, setting, not int(element.value))
|
|
elif setting == "ste_disabled":
|
|
setattr(obj, setting, not int(element.value))
|
|
else:
|
|
LOG.debug("Setting %s = %s" % (setting, element.value))
|
|
setattr(obj, setting, element.value)
|
|
except Exception, e:
|
|
LOG.debug(element.get_name())
|
|
raise
|
|
|
|
# experimental end
|
|
|
|
@classmethod
|
|
def match_model(cls, filedata, filename):
|
|
match_size = False
|
|
match_model = False
|
|
|
|
# testing the file data size
|
|
if len(filedata) == MEM_SIZE:
|
|
match_size = True
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("BF-T1 matched!")
|
|
|
|
|
|
# testing the firmware model fingerprint
|
|
match_model = _model_match(cls, filedata)
|
|
|
|
if match_size and match_model:
|
|
return True
|
|
else:
|
|
return False
|