|
# Copyright 2017 Pavel Milanes, CO7WT, <pavelmc@gmail.com>
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import time
|
|
import struct
|
|
import logging
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
from time import sleep
|
|
from chirp import chirp_common, directory, memmap
|
|
from chirp import bitwise, errors, util
|
|
from textwrap import dedent
|
|
|
|
# A note about the memmory in these radios
|
|
# mainly speculation until proven otherwise:
|
|
#
|
|
# The '9100' OEM software only manipulates the lower 0x180 bytes on read/write
|
|
# operations as we know, the file generated by the OEM software IN NOT an exact
|
|
# eeprom image, it's a crude text file with a pseudo csv format
|
|
|
|
MEM_SIZE = 0x180 # 384 bytes
|
|
BLOCK_SIZE = 0x10
|
|
ACK_CMD = "\x06"
|
|
MODES = ["FM", "NFM"]
|
|
SKIP_VALUES = ["S", ""]
|
|
|
|
# This is a general serial timeout for all serial read functions.
|
|
# Practice has show that about 0.7 sec will be enough to cover all radios.
|
|
STIMEOUT = 1
|
|
|
|
# this var controls the verbosity in the debug and by default it's low (False)
|
|
# make it True and you will to get a very verbose debug.log
|
|
debug = True
|
|
|
|
##### ID strings #####################################################
|
|
|
|
# BF-T1 handheld
|
|
BFT1_magic = "\x05PROGRAM"
|
|
BFT1_ident = "\x20\x42\x46\x39\x31\x30\x30\x53" # " BF9100S"
|
|
|
|
|
|
def _clean_buffer(radio):
|
|
"""Cleaning the read serial buffer, hard timeout to survive an infinite
|
|
data stream"""
|
|
|
|
# touching the serial timeout to optimize the flushing
|
|
# restored at the end to the default value
|
|
radio.pipe.timeout = 0.1
|
|
dump = "1"
|
|
datacount = 0
|
|
|
|
try:
|
|
while len(dump) > 0:
|
|
dump = radio.pipe.read(100)
|
|
datacount += len(dump)
|
|
# hard limit to survive a infinite serial data stream
|
|
# 5 times bigger than a normal rx block (20 bytes)
|
|
if datacount > 101:
|
|
seriale = "Please check your serial port selection."
|
|
raise errors.RadioError(seriale)
|
|
|
|
# restore the default serial timeout
|
|
radio.pipe.timeout = STIMEOUT
|
|
|
|
except Exception:
|
|
raise errors.RadioError("Unknown error cleaning the serial buffer")
|
|
|
|
|
|
def _rawrecv(radio, amount = 0):
|
|
"""Raw read from the radio device"""
|
|
|
|
# var to hold the data to return
|
|
data = ""
|
|
|
|
try:
|
|
if amount == 0:
|
|
data = radio.pipe.read()
|
|
else:
|
|
data = radio.pipe.read(amount)
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("<== (%d) bytes:\n\n%s" %
|
|
(len(data), util.hexprint(data)))
|
|
|
|
# fail if no data is received
|
|
if len(data) == 0:
|
|
raise errors.RadioError("No data received from radio")
|
|
|
|
except:
|
|
raise errors.RadioError("Error reading data from radio")
|
|
|
|
return data
|
|
|
|
|
|
def _send(radio, data):
|
|
"""Send data to the radio device"""
|
|
|
|
try:
|
|
radio.pipe.write(data)
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("==> (%d) bytes:\n\n%s" %
|
|
(len(data), util.hexprint(data)))
|
|
except:
|
|
raise errors.RadioError("Error sending data to radio")
|
|
|
|
|
|
def _make_frame(cmd, addr, data=""):
|
|
"""Pack the info in the header format"""
|
|
frame = struct.pack(">BHB", ord(cmd), addr, BLOCK_SIZE)
|
|
|
|
# add the data if set
|
|
if len(data) != 0:
|
|
frame += data
|
|
|
|
return frame
|
|
|
|
|
|
def _recv(radio, addr):
|
|
"""Get data from the radio"""
|
|
|
|
# Get the full 20 bytes at a time
|
|
# 4 bytes header + 16 bytes of data (BLOCK_SIZE)
|
|
|
|
# get the whole block
|
|
block = _rawrecv(radio, BLOCK_SIZE + 4)
|
|
|
|
# short answer
|
|
if len(block) < (BLOCK_SIZE + 4):
|
|
raise errors.RadioError("Wrong block length (short) at 0x%04x" % addr)
|
|
|
|
# long answer
|
|
if len(block) > (BLOCK_SIZE + 4):
|
|
raise errors.RadioError("Wrong block length (long) at 0x%04x" % addr)
|
|
|
|
|
|
# header validation
|
|
c, a, l = struct.unpack(">cHB", block[0:4])
|
|
if c != "W" or a != addr or l != BLOCK_SIZE:
|
|
LOG.debug("Invalid header for block 0x%04x:" % addr)
|
|
LOG.debug("CMD: %s ADDR: %04x SIZE: %02x" % (c, a, l))
|
|
raise errors.RadioError("Invalid header for block 0x%04x:" % addr)
|
|
|
|
# return the data, 16 bytes of payload
|
|
return block[4:]
|
|
|
|
|
|
def _start_clone_mode(radio, status):
|
|
"""Put the radio in clone mode, 3 tries"""
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
# prep the data to show in the UI
|
|
status.cur = 0
|
|
status.msg = "Identifying the radio..."
|
|
status.max = 3
|
|
radio.status_fn(status)
|
|
|
|
try:
|
|
for a in range(0, status.max):
|
|
# Update the UI
|
|
status.cur = a + 1
|
|
radio.status_fn(status)
|
|
|
|
# send the magic word
|
|
_send(radio, radio._magic)
|
|
|
|
# Now you get a x06 of ACK if all goes well
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
if ack == ACK_CMD:
|
|
# DEBUG
|
|
LOG.info("Magic ACK received")
|
|
status.cur = status.max
|
|
radio.status_fn(status)
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
except errors.RadioError:
|
|
raise
|
|
except Exception, e:
|
|
raise errors.RadioError("Error sending Magic to radio:\n%s" % e)
|
|
|
|
|
|
def _do_ident(radio, status):
|
|
"""Put the radio in PROGRAM mode & identify it"""
|
|
# set the serial discipline (default)
|
|
radio.pipe.baudrate = 9600
|
|
radio.pipe.parity = "N"
|
|
radio.pipe.bytesize = 8
|
|
radio.pipe.stopbits = 1
|
|
radio.pipe.timeout = STIMEOUT
|
|
radio.pipe.flush()
|
|
|
|
# open the radio into program mode
|
|
if _start_clone_mode(radio, status) is False:
|
|
raise errors.RadioError("Radio did not enter clone mode, wrong model?")
|
|
|
|
# Ok, poke it to get the ident string
|
|
_send(radio, "\x02")
|
|
ident = _rawrecv(radio, len(radio._id))
|
|
|
|
# basic check for the ident
|
|
if len(ident) != len(radio._id):
|
|
raise errors.RadioError("Radio send a odd identification block.")
|
|
|
|
# check if ident is OK
|
|
if ident != radio._id:
|
|
LOG.debug("Incorrect model ID, got this:\n\n" + util.hexprint(ident))
|
|
raise errors.RadioError("Radio identification failed.")
|
|
|
|
# handshake
|
|
_send(radio, ACK_CMD)
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
#checking handshake
|
|
if len(ack) == 1 and ack == ACK_CMD:
|
|
# DEBUG
|
|
LOG.info("ID ACK received")
|
|
else:
|
|
LOG.debug("Radio handshake failed.")
|
|
raise errors.RadioError("Radio handshake failed.")
|
|
|
|
# DEBUG
|
|
LOG.info("Positive ident, this is a %s %s" % (radio.VENDOR, radio.MODEL))
|
|
|
|
return True
|
|
|
|
|
|
def _download(radio):
|
|
"""Get the memory map"""
|
|
|
|
# UI progress
|
|
status = chirp_common.Status()
|
|
|
|
# put radio in program mode and identify it
|
|
_do_ident(radio, status)
|
|
|
|
# reset the progress bar in the UI
|
|
status.max = MEM_SIZE / BLOCK_SIZE
|
|
status.msg = "Cloning from radio..."
|
|
status.cur = 0
|
|
radio.status_fn(status)
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
# increasing the timeout in the "discovery" process.
|
|
radio.pipe.timeout = 3 # 3 seconds.
|
|
|
|
data = ""
|
|
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
|
|
# sending the read request
|
|
_send(radio, _make_frame("R", addr))
|
|
|
|
# read
|
|
d = _recv(radio, addr)
|
|
|
|
# aggregate the data
|
|
data += d
|
|
|
|
# UI Update
|
|
status.cur = addr / BLOCK_SIZE
|
|
status.msg = "Cloning from radio..."
|
|
radio.status_fn(status)
|
|
|
|
return data
|
|
|
|
|
|
def _upload(radio):
|
|
"""Upload procedure"""
|
|
|
|
# UI progress
|
|
status = chirp_common.Status()
|
|
|
|
# put radio in program mode and identify it
|
|
_do_ident(radio, status, True)
|
|
|
|
# get the data to upload to radio
|
|
data = radio.get_mmap()
|
|
|
|
# Reset the UI progress
|
|
status.max = MEM_SIZE / BLOCK_SIZE
|
|
status.cur = 0
|
|
status.msg = "Cloning to radio..."
|
|
radio.status_fn(status)
|
|
|
|
# cleaning the serial buffer
|
|
_clean_buffer(radio)
|
|
|
|
# the fun start here
|
|
for addr in range(0, MEM_SIZE, BLOCK_SIZE):
|
|
# getting the block of data to send
|
|
d = data[addr:addr + BLOCK_SIZE]
|
|
|
|
# build the frame to send
|
|
frame = _make_frame("W", addr, BLOCK_SIZE, d)
|
|
|
|
# send the frame
|
|
_send(radio, frame)
|
|
|
|
# receiving the response
|
|
ack = _rawrecv(radio, 1)
|
|
|
|
# basic check
|
|
if len(ack) != 1:
|
|
raise errors.RadioError("No ACK when writing block 0x%04x" % addr)
|
|
|
|
if ack != ACK_CMD:
|
|
raise errors.RadioError("Bad ACK writing block 0x%04x:" % addr)
|
|
|
|
# UI Update
|
|
status.cur = addr / TX_BLOCK_SIZE
|
|
status.msg = "Cloning to radio..."
|
|
radio.status_fn(status)
|
|
|
|
|
|
def _split(rf, f1, f2):
|
|
"""Returns False if the two freqs are in the same band (no split)
|
|
or True otherwise"""
|
|
|
|
# determine if the two freqs are in the same band
|
|
for low, high in rf.valid_bands:
|
|
if f1 >= low and f1 <= high and f2 >= low and f2 <= high:
|
|
# if the two freqs are on the same Band this is not a split
|
|
return False
|
|
|
|
# if you get here is because the freq pairs are split
|
|
return True
|
|
|
|
|
|
#~ def model_match(cls, data):
|
|
#~ """Match the opened/downloaded image to the correct version"""
|
|
#~ # by now just size match
|
|
|
|
#~ return False
|
|
|
|
|
|
MEM_FORMAT = """
|
|
#seekto 0x0000;
|
|
struct {
|
|
u8 unknown0;
|
|
lbcd rxfreq[3];
|
|
u8 unknown1[4];
|
|
lbcd txfreq[3];
|
|
u8 unknown2[5];
|
|
} memory[20];
|
|
"""
|
|
|
|
|
|
@directory.register
|
|
class BFT1(chirp_common.CloneModeRadio, chirp_common.ExperimentalRadio):
|
|
"""Baofeng BT-F1 radio & possibly alike radios"""
|
|
VENDOR = "Baofeng"
|
|
MODEL = "BF-T1"
|
|
_power_levels = [chirp_common.PowerLevel("High", watts=5),
|
|
chirp_common.PowerLevel("Low", watts=1)]
|
|
_vhf_range = (136000000, 174000000)
|
|
_uhf_range = (400000000, 470000000)
|
|
_upper = 19
|
|
_magic = BFT1_magic
|
|
_id = BFT1_ident
|
|
|
|
@classmethod
|
|
def get_prompts(cls):
|
|
rp = chirp_common.RadioPrompts()
|
|
rp.experimental = \
|
|
('This driver is experimental.\n'
|
|
'\n'
|
|
'Please keep a copy of your memories with the original software '
|
|
'if you treasure them, this driver is new and may contain'
|
|
' bugs.\n'
|
|
'\n'
|
|
)
|
|
rp.pre_download = _(dedent("""\
|
|
Follow these instructions to download your info:
|
|
|
|
1 - Turn off your radio
|
|
2 - Connect your interface cable
|
|
3 - Turn on your radio
|
|
4 - Do the download of your radio data
|
|
|
|
"""))
|
|
rp.pre_upload = _(dedent("""\
|
|
Follow these instructions to upload your info:
|
|
|
|
1 - Turn off your radio
|
|
2 - Connect your interface cable
|
|
3 - Turn on your radio
|
|
4 - Do the upload of your radio data
|
|
|
|
"""))
|
|
return rp
|
|
|
|
def get_features(self):
|
|
"""Get the radio's features"""
|
|
|
|
# we will use the following var as global
|
|
global POWER_LEVELS
|
|
|
|
rf = chirp_common.RadioFeatures()
|
|
#~ rf.has_settings = True
|
|
#~ rf.has_bank = False
|
|
#~ rf.has_tuning_step = False
|
|
#~ rf.can_odd_split = True
|
|
#~ rf.has_name = True
|
|
rf.has_offset = True
|
|
rf.has_mode = True
|
|
rf.valid_modes = MODES
|
|
#~ rf.has_dtcs = True
|
|
#~ rf.has_rx_dtcs = True
|
|
#~ rf.has_dtcs_polarity = True
|
|
#~ rf.has_ctone = True
|
|
#~ rf.has_cross = True
|
|
#~ rf.valid_characters = VALID_CHARS
|
|
#~ rf.valid_name_length = self.NAME_LENGTH
|
|
rf.valid_duplexes = ["", "-", "+", "split", "off"]
|
|
#~ rf.valid_tmodes = ['', 'Tone', 'TSQL', 'DTCS', 'Cross']
|
|
#~ rf.valid_cross_modes = [
|
|
#~ "Tone->Tone",
|
|
#~ "DTCS->",
|
|
#~ "->DTCS",
|
|
#~ "Tone->DTCS",
|
|
#~ "DTCS->Tone",
|
|
#~ "->Tone",
|
|
#~ "DTCS->DTCS"]
|
|
rf.valid_skips = SKIP_VALUES
|
|
#~ rf.valid_dtcs_codes = DTCS
|
|
rf.memory_bounds = (0, self._upper)
|
|
|
|
# power levels
|
|
POWER_LEVELS = self._power_levels
|
|
rf.valid_power_levels = POWER_LEVELS
|
|
|
|
# normal dual bands
|
|
rf.valid_bands = [self._vhf_range, self._uhf_range]
|
|
|
|
return rf
|
|
|
|
def process_mmap(self):
|
|
"""Process the mem map into the mem object"""
|
|
|
|
# Get it
|
|
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)
|
|
|
|
def sync_in(self):
|
|
"""Download from radio"""
|
|
data = _download(self)
|
|
self._mmap = memmap.MemoryMap(data)
|
|
self.process_mmap()
|
|
|
|
def sync_out(self):
|
|
"""Upload to radio"""
|
|
|
|
#~ try:
|
|
#~ _upload(self)
|
|
#~ except errors.RadioError:
|
|
#~ raise
|
|
#~ except Exception, e:
|
|
#~ raise errors.RadioError("Error: %s" % e)
|
|
|
|
# upload disabled by now
|
|
raise errors.RadioError("Error: This is a dev driver, no upload yet.")
|
|
|
|
def get_raw_memory(self, number):
|
|
return repr(self._memobj.memory[number])
|
|
|
|
def get_memory(self, number):
|
|
"""Get the mem representation from the radio image"""
|
|
_mem = self._memobj.memory[number]
|
|
|
|
# Create a high-level memory object to return to the UI
|
|
mem = chirp_common.Memory()
|
|
|
|
# Memory number
|
|
mem.number = number
|
|
|
|
if _mem.get_raw()[0] == "\xFF":
|
|
mem.empty = True
|
|
return mem
|
|
|
|
# Freq and offset
|
|
mem.freq = int(_mem.rxfreq) * 1000
|
|
# tx freq can be blank
|
|
if _mem.get_raw()[8] == "\xFF":
|
|
# TX freq not set
|
|
mem.offset = 0
|
|
mem.duplex = "off"
|
|
else:
|
|
# TX freq set
|
|
txfreq = int(_mem.txfreq) * 1000
|
|
offset = txfreq - mem.freq
|
|
if offset != 0:
|
|
if _split(self.get_features(), mem.freq, txfreq):
|
|
mem.duplex = "split"
|
|
mem.offset = txfreq
|
|
elif offset < 0:
|
|
mem.offset = abs(offset)
|
|
mem.duplex = "-"
|
|
elif offset > 0:
|
|
mem.offset = offset
|
|
mem.duplex = "+"
|
|
else:
|
|
mem.offset = 0
|
|
|
|
#~ # power
|
|
#~ mem.power = POWER_LEVELS[int(_mem.power)]
|
|
|
|
#~ # wide/narrow
|
|
#~ mem.mode = MODES[int(_mem.wide)]
|
|
|
|
#~ # skip
|
|
#~ mem.skip = SKIP_VALUES[_mem.add]
|
|
|
|
#~ # tone data
|
|
#~ rxtone = txtone = None
|
|
#~ txtone = self._decode_tone(_mem.txtone)
|
|
#~ rxtone = self._decode_tone(_mem.rxtone)
|
|
#~ chirp_common.split_tone_decode(mem, txtone, rxtone)
|
|
|
|
|
|
return mem
|
|
|
|
def set_memory(self, mem):
|
|
"""Set the memory data in the eeprom img from the UI"""
|
|
# get the eprom representation of this channel
|
|
_mem = self._memobj.memory[mem.number]
|
|
_names = self._memobj.names[mem.number]
|
|
|
|
# if empty memmory
|
|
if mem.empty:
|
|
# the channel itself
|
|
_mem.set_raw("\xFF" * 16)
|
|
|
|
# frequency
|
|
_mem.rxfreq = mem.freq / 1000
|
|
|
|
# duplex
|
|
if mem.duplex == "+":
|
|
_mem.txfreq = (mem.freq + mem.offset) / 1000
|
|
elif mem.duplex == "-":
|
|
_mem.txfreq = (mem.freq - mem.offset) / 1000
|
|
elif mem.duplex == "off":
|
|
for i in _mem.txfreq:
|
|
i.set_raw("\xFF")
|
|
elif mem.duplex == "split":
|
|
_mem.txfreq = mem.offset / 1000
|
|
else:
|
|
_mem.txfreq = mem.freq / 1000
|
|
|
|
#~ # tone data
|
|
#~ ((txmode, txtone, txpol), (rxmode, rxtone, rxpol)) = \
|
|
#~ chirp_common.split_tone_encode(mem)
|
|
#~ self._encode_tone(_mem.txtone, txmode, txtone, txpol)
|
|
#~ self._encode_tone(_mem.rxtone, rxmode, rxtone, rxpol)
|
|
|
|
return mem
|
|
|
|
@classmethod
|
|
def match_model(cls, filedata, filename):
|
|
match_size = False
|
|
#~ match_model = False
|
|
|
|
LOG.debug("len file/mem %i/%i" % (len(filedata), MEM_SIZE))
|
|
|
|
# testing the file data size
|
|
if len(filedata) == MEM_SIZE:
|
|
match_size = True
|
|
|
|
# DEBUG
|
|
if debug is True:
|
|
LOG.debug("BF-T1 matched!")
|
|
|
|
|
|
# testing the firmware model fingerprint
|
|
#~ match_model = model_match(cls, filedata)
|
|
|
|
if match_size: # and match_model:
|
|
return True
|
|
else:
|
|
return False
|