Project

General

Profile

Bug #11180 ยป f4hwn.py

Jocelyn Maheu, 02/17/2024 07:53 PM

 
# Quansheng UV-K5 driver (c) 2023 Jacek Lipkowski <sq5bpf@lipkowski.org>
# Adapted For UV-K5 EGZUMER custom software By EGZUMER, JOC2
# Re-Adapted For UV-K5 EGZUMER/F4HWN custom software By JOC2
#
# based on template.py Copyright 2012 Dan Smith <dsmith@danplanet.com>
#
#
# This is a preliminary version of a driver for the UV-K5
# It is based on my reverse engineering effort described here:
# https://github.com/sq5bpf/uvk5-reverse-engineering
#
# Warning: this driver is experimental, it may brick your radio,
# eat your lunch and mess up your configuration.
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

# change/ modification
#
# 2024-02-09 :section password has been commented, because the new chirp give error with int.
#

import struct
import logging
import wx

from chirp import chirp_common, directory, bitwise, memmap, errors, util
from chirp.settings import RadioSetting, RadioSettingGroup, \
RadioSettingValueBoolean, RadioSettingValueList, \
RadioSettingValueInteger, RadioSettingValueString, \
RadioSettings, InvalidValueError

LOG = logging.getLogger(__name__)

# Show the obfuscated version of commands. Not needed normally, but
# might be useful for someone who is debugging a similar radio
DEBUG_SHOW_OBFUSCATED_COMMANDS = False

# Show the memory being written/received. Not needed normally, because
# this is the same information as in the packet hexdumps, but
# might be useful for someone debugging some obscure memory issue
DEBUG_SHOW_MEMORY_ACTIONS = False

# TODO: remove the driver version when it's in mainline chirp
DRIVER_VERSION = "Quansheng UV-K5/K6/5R driver ver: 2024/02/17 (c) EGZUMER + F4HWN v1.8.3"
FIRMWARE_DRIVER_VERSION_UPDATE = "https://github.com/armel/uv-k5-firmware-custom-feat-F4HWN"
CHIRP_DRIVER_VERSION_UPDATE = "https://github.com/armel/uv-k5-chirp-driver"
VALEUR_COMPILER = "ENABLE"

MEM_FORMAT = """
//#seekto 0x0000;
struct {
ul32 freq;
ul32 offset;

// 0x08
u8 rxcode;
u8 txcode;

// 0x0A
u8 txcodeflag:4,
rxcodeflag:4;

// 0x0B
u8 modulation:4,
offsetDir:4;

// 0x0C
u8 __UNUSED1:3,
busyChLockout:1,
txpower:2,
bandwidth:1,
freq_reverse:1;

// 0x0D
u8 __UNUSED2:4,
dtmf_pttid:3,
dtmf_decode:1;

// 0x0E
u8 step;
u8 scrambler;

} channel[214];

//#seekto 0xd60;
struct {
u8 is_scanlist1:1,
is_scanlist2:1,
compander:2,
is_free:1,
band:3;
} ch_attr[207];

#seekto 0xe40;
ul16 fmfreq[20];

#seekto 0xe70;
u8 call_channel;
u8 squelch;
u8 max_talk_time;
u8 noaa_autoscan;
u8 key_lock;
u8 vox_switch;
u8 vox_level;
u8 mic_gain;


u8 backlight_min:4,
backlight_max:4;

u8 channel_display_mode;
u8 crossband;
u8 battery_save;
u8 dual_watch;
u8 backlight_time;
u8 ste;
u8 freq_mode_allowed;

#seekto 0xe80;
u8 ScreenChannel_A;
u8 MrChannel_A;
u8 FreqChannel_A;
u8 ScreenChannel_B;
u8 MrChannel_B;
u8 FreqChannel_B;
u8 NoaaChannel_A;
u8 NoaaChannel_B;

#seekto 0xe90;

u8 keyM_longpress_action:7,
button_beep:1;

u8 key1_shortpress_action;
u8 key1_longpress_action;
u8 key2_shortpress_action;
u8 key2_longpress_action;
u8 scan_resume_mode;
u8 auto_keypad_lock;
u8 power_on_dispmode;
ul32 password;

#seekto 0xea0;
u8 voice;
u8 s0_level;
u8 s9_level;

#seekto 0xea8;
u8 alarm_mode;
u8 roger_beep;
u8 rp_ste;
u8 TX_VFO;
u8 Battery_type;

#seekto 0xeb0;
char logo_line1[16];
char logo_line2[16];

//#seekto 0xed0;
struct {
u8 side_tone;
char separate_code;
char group_call_code;
u8 decode_response;
u8 auto_reset_time;
u8 preload_time;
u8 first_code_persist_time;
u8 hash_persist_time;
u8 code_persist_time;
u8 code_interval_time;
u8 permit_remote_kill;

#seekto 0xee0;
char local_code[3];
#seek 5;
char kill_code[5];
#seek 3;
char revive_code[5];
#seek 3;
char up_code[16];
char down_code[16];
} dtmf;

//#seekto 0xf18;
u8 slDef;
u8 sl1PriorEnab;
u8 sl1PriorCh1;
u8 sl1PriorCh2;
u8 sl2PriorEnab;
u8 sl2PriorCh1;
u8 sl2PriorCh2;

#seekto 0xf40;
u8 int_flock;
u8 int_350tx;
u8 int_KILLED;
u8 int_200tx;
u8 int_500tx;
u8 int_350en;
u8 int_scren;


u8 backlight_on_TX_RX:2,
AM_fix:1,
mic_bar:1,
battery_text:2,
live_DTMF_decoder:1,
unknown:1;


#seekto 0xf50;
struct {
char name[16];
} channelname[200];

#seekto 0x1c00;
struct {
char name[8];
char number[3];
#seek 5;
} dtmfcontact[16];

struct {
struct {
#seekto 0x1E00;
u8 openRssiThr[10];
#seekto 0x1E10;
u8 closeRssiThr[10];
#seekto 0x1E20;
u8 openNoiseThr[10];
#seekto 0x1E30;
u8 closeNoiseThr[10];
#seekto 0x1E40;
u8 closeGlitchThr[10];
#seekto 0x1E50;
u8 openGlitchThr[10];
} sqlBand4_7;

struct {
#seekto 0x1E60;
u8 openRssiThr[10];
#seekto 0x1E70;
u8 closeRssiThr[10];
#seekto 0x1E80;
u8 openNoiseThr[10];
#seekto 0x1E90;
u8 closeNoiseThr[10];
#seekto 0x1EA0;
u8 closeGlitchThr[10];
#seekto 0x1EB0;
u8 openGlitchThr[10];
} sqlBand1_3;

#seekto 0x1EC0;
struct {
ul16 level1;
ul16 level2;
ul16 level4;
ul16 level6;
} rssiLevelsBands3_7;

struct {
ul16 level1;
ul16 level2;
ul16 level4;
ul16 level6;
} rssiLevelsBands1_2;

struct {
struct {
u8 lower;
u8 center;
u8 upper;
} low;
struct {
u8 lower;
u8 center;
u8 upper;
} mid;
struct {
u8 lower;
u8 center;
u8 upper;
} hi;
#seek 7;
} txp[7];

#seekto 0x1F40;
ul16 batLvl[6];

#seekto 0x1F50;
ul16 vox1Thr[10];

#seekto 0x1F68;
ul16 vox0Thr[10];

#seekto 0x1F80;
u8 micLevel[5];

#seekto 0x1F88;
il16 xtalFreqLow;

#seekto 0x1F8E;
u8 volumeGain;
u8 dacGain;
} cal;


#seekto 0x1FF0;
struct {
u8 ENABLE_DTMF_CALLING:1,
ENABLE_PWRON_PASSWORD:1,
ENABLE_TX1750:1,
ENABLE_ALARM:1,
ENABLE_VOX:1,
ENABLE_VOICE:1,
ENABLE_NOAA:1,
ENABLE_FMRADIO:1;
u8 __UNUSED:3,
ENABLE_AM_FIX:1,
ENABLE_BLMIN_TMP_OFF:1,
ENABLE_RAW_DEMODULATORS:1,
ENABLE_WIDE_RX:1,
ENABLE_FLASHLIGHT:1;
} BUILD_OPTIONS;

#seekto 0x1FF2;
u8 eeprom0x1ff2;
u8 eeprom0x1ff3;
u8 eeprom0x1ff4;

u8 set_futur:1,
set_met:1,
set_lck:1,
set_inv:1,
set_contrast:4;

u8 set_tot:4,
set_eot:4;

u8 set_low:4,
set_ptt:4;

u8 eeprom0x1ff8;
u8 eeprom0x1ff9;
u8 eeprom0x1ffa;
u8 eeprom0x1ffb;
u8 eeprom0x1ffc;
u8 eeprom0x1ffd;
u8 eeprom0x1ffe;
u8 eeprom0x1fff;
"""


# flags1
FLAGS1_OFFSET_NONE = 0b00
FLAGS1_OFFSET_MINUS = 0b10
FLAGS1_OFFSET_PLUS = 0b01

POWER_HIGH = 0b10
POWER_MEDIUM = 0b01
POWER_LOW = 0b00

# SET_LOW_POWER f4hwn
SET_LOW_LIST = ["125mW", "250mW", "500mW", "1W", "< 20mW"]

# SET_PTT f4hwn
SET_PTT_LIST = ["CLASSIC", "ONEPUSH"]

# SET_TOT and SET_EOT f4hwn
SET_TOT_EOT_LIST = ["OFF", "SOUND", "VISUAL", "ALL"]

# SET_OFF_ON f4hwn
SET_OFF_ON_LIST = ["OFF", "ON"]

# SET_lck f4hwn
SET_LCK_LIST = ["KEYS", "KEYS+PTT"]

# SET_MET f4hwn
SET_MET_LIST = ["TINY", "CLASSIC"]


# dtmf_flags
PTTID_LIST = ["OFF", "UP CODE", "DOWN CODE", "UP+DOWN CODE", "APOLLO QUINDAR"]

# power
UVK5_POWER_LEVELS = [chirp_common.PowerLevel("Low", watts=1.50),
chirp_common.PowerLevel("Med", watts=3.00),
chirp_common.PowerLevel("High", watts=5.00),
]

# scrambler
SCRAMBLER_LIST = ["OFF", "2600Hz", "2700Hz", "2800Hz", "2900Hz", "3000Hz",
"3100Hz", "3200Hz", "3300Hz", "3400Hz", "3500Hz"]
# compander
COMPANDER_LIST = ["OFF", "TX", "RX", "TX/RX"]

# rx mode
RXMODE_LIST = ["MAIN ONLY", "DUAL RX RESPOND", "CROSS BAND", "MAIN TX DUAL RX"]

# channel display mode
CHANNELDISP_LIST = ["Frequency (FREQ)", "CHANNEL NUMBER", "NAME", "Name + Frequency (NAME + FREQ)"]

# TalkTime
TALK_TIME_LIST = ["30 sec", "1 min", "2 min", "3 min", "4 min", "5 min",
"6 min", "7 min", "8 min", "9 min", "15 min"]
# Auto Keypad Lock
AUTO_KEYPAD_LOCK_LIST = ["OFF", "AUTO"]

# battery save
BATSAVE_LIST = ["OFF", "1:1", "1:2", "1:3", "1:4"]

# battery type
BATTYPE_LIST = ["1600 mAh", "2200 mAh"]
# bat txt
BAT_TXT_LIST = ["NONE", "VOLTAGE", "PERCENT"]
# Backlight auto mode
BACKLIGHT_LIST = ["OFF", "5 sec", "10 sec", "20 sec", "1 min", "2 min", "4 min",
"Always On (ON)"]

# Backlight LVL
BACKLIGHT_LVL_LIST = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

# Backlight _TX_RX_LIST
BACKLIGHT_TX_RX_LIST = ["OFF", "TX", "RX", "TX/RX"]

# steps TODO: change order
STEPS = [2.5, 5, 6.25, 10, 12.5, 25, 8.33, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.25,
9, 15, 20, 30, 50, 100, 125, 200, 250, 500]

# ctcss/dcs codes
TMODES = ["", "Tone", "DTCS", "DTCS"]
TONE_NONE = 0
TONE_CTCSS = 1
TONE_DCS = 2
TONE_RDCS = 3


CTCSS_TONES = [
67.0, 69.3, 71.9, 74.4, 77.0, 79.7, 82.5, 85.4,
88.5, 91.5, 94.8, 97.4, 100.0, 103.5, 107.2, 110.9,
114.8, 118.8, 123.0, 127.3, 131.8, 136.5, 141.3, 146.2,
151.4, 156.7, 159.8, 162.2, 165.5, 167.9, 171.3, 173.8,
177.3, 179.9, 183.5, 186.2, 189.9, 192.8, 196.6, 199.5,
203.5, 206.5, 210.7, 218.1, 225.7, 229.1, 233.6, 241.8,
250.3, 254.1
]

# lifted from ft4.py
DTCS_CODES = [ # TODO: add negative codes
23, 25, 26, 31, 32, 36, 43, 47, 51, 53, 54,
65, 71, 72, 73, 74, 114, 115, 116, 122, 125, 131,
132, 134, 143, 145, 152, 155, 156, 162, 165, 172, 174,
205, 212, 223, 225, 226, 243, 244, 245, 246, 251, 252,
255, 261, 263, 265, 266, 271, 274, 306, 311, 315, 325,
331, 332, 343, 346, 351, 356, 364, 365, 371, 411, 412,
413, 423, 431, 432, 445, 446, 452, 454, 455, 462, 464,
465, 466, 503, 506, 516, 523, 526, 532, 546, 565, 606,
612, 624, 627, 631, 632, 654, 662, 664, 703, 712, 723,
731, 732, 734, 743, 754
]

# flock list extended
FLOCK_LIST = ["DEFAULT+ (137-174, 400-470 + Tx200, Tx350, Tx500)",
"FCC HAM (144-148, 420-450)",
"CE HAM (144-146, 430-440)",
"GB HAM (144-148, 430-440)",
"137-174, 400-430",
"137-174, 400-438",
"Disable All",
"Unlock All"]

SCANRESUME_LIST = ["Listen 5 seconds and resume (TIMEOUT)",
"Listen until signal disapears (CARRIER)",
"Stop scanning after receiving a signal (STOP)"]
WELCOME_LIST = ["Full screen test (FULL)", "User message (MESSAGE)", "Battery voltage (VOLTAGE)", "NONE"]
VOICE_LIST = ["OFF", "Chinese", "English"]

# ACTIVE CHANNEL
TX_VFO_LIST = ["A", "B"]
ALARMMODE_LIST = ["SITE", "TONE"]
ROGER_LIST = ["OFF", "Roger beep (ROGER)", "MDC data burst (MDC)"]
RTE_LIST = ["OFF", "100ms", "200ms", "300ms", "400ms",
"500ms", "600ms", "700ms", "800ms", "900ms", "1000ms"]
VOX_LIST = ["OFF", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]

MEM_SIZE = 0x2000 # size of all memory
PROG_SIZE = 0x1d00 # size of the memory that we will write
MEM_BLOCK = 0x80 # largest block of memory that we can reliably write
CAL_START = 0x1E00 # calibration memory start address
F4HWN_START =0x1FF2 # calibration F4HWN memory start address

# fm radio supported frequencies
FMMIN = 76.0
FMMAX = 108.0

# bands supported by the UV-K5
BANDS_STANDARD = {
0: [50.0, 76.0],
1: [108.0, 136.9999],
2: [137.0, 173.9999],
3: [174.0, 349.9999],
4: [350.0, 399.9999],
5: [400.0, 469.9999],
6: [470.0, 600.0]
}

BANDS_WIDE = {
0: [18.0, 108.0],
1: [108.0, 136.9999],
2: [137.0, 173.9999],
3: [174.0, 349.9999],
4: [350.0, 399.9999],
5: [400.0, 469.9999],
6: [470.0, 1300.0]
}

SCANLIST_LIST = ["None", "List1", "List2", "Both"]
SCANLIST_SELECT_LIST = ["LIST 1", "LIST 2", "All Channel (ALL)"]

DTMF_CHARS = "0123456789ABCD*# "
DTMF_CHARS_ID = "0123456789ABCDabcd"
DTMF_CHARS_KILL = "0123456789ABCDabcd"
DTMF_CHARS_UPDOWN = "0123456789ABCDabcd#* "
DTMF_CODE_CHARS = "ABCD*# "
DTMF_DECODE_RESPONSE_LIST = ["DO NOTHING", "Local ringing (RING)", "Replay response (REPLY)",
"Local ringing + reply response (BOTH)"]

KEYACTIONS_LIST = ["NONE",
"FLASHLIGHT",
"POWER",
"MONITOR",
"SCAN",
"VOX",
"ALARM",
"FM RADIO",
"1750Hz TONE",
"LOCK KEYPAD",
"Switch main VFO (SWITCH VFO)",
"Switch frequency/memory mode (VFO/MR)",
"Switch demodulation (SWITCH DEMODUL)",
"BKL_MIN_N/U",
"Change RxMode: *Main only,*Dual RX,*Cross Band,*TX Dual RX (SWITCH RX MODE)",
"SWITCH PTT",
"SWITCH WIDE NARROW"
]

MIC_GAIN_LIST = ["+1.1dB", "+4.0dB", "+8.0dB", "+12.0dB", "+15.1dB"]


def xorarr(data: bytes):
"""the communication is obfuscated using this fine mechanism"""
tbl = [22, 108, 20, 230, 46, 145, 13, 64, 33, 53, 213, 64, 19, 3, 233, 128]
ret = b""
idx = 0
for byte in data:
ret += bytes([byte ^ tbl[idx]])
idx = (idx+1) % len(tbl)
return ret


def calculate_crc16_xmodem(data: bytes):
"""
if this crc was used for communication to AND from the radio, then it
would be a measure to increase reliability.
but it's only used towards the radio, so it's for further obfuscation
"""
poly = 0x1021
crc = 0x0
for byte in data:
crc = crc ^ (byte << 8)
for _ in range(8):
crc = crc << 1
if crc & 0x10000:
crc = (crc ^ poly) & 0xFFFF
return crc & 0xFFFF


def _send_command(serport, data: bytes):
"""Send a command to UV-K5 radio"""
LOG.debug("Sending command (unobfuscated) len=0x%4.4x:\n%s",
len(data), util.hexprint(data))

crc = calculate_crc16_xmodem(data)
data2 = data + struct.pack("<H", crc)

command = struct.pack(">HBB", 0xabcd, len(data), 0) + \
xorarr(data2) + \
struct.pack(">H", 0xdcba)
if DEBUG_SHOW_OBFUSCATED_COMMANDS:
LOG.debug("Sending command (obfuscated):\n%s", util.hexprint(command))
try:
result = serport.write(command)
except Exception as e:
raise errors.RadioError("Error writing data to radio") from e
return result


def _receive_reply(serport):
header = serport.read(4)
if len(header) != 4:
LOG.warning("Header short read: [%s] len=%i",
util.hexprint(header), len(header))
raise errors.RadioError("Header short read")
if header[0] != 0xAB or header[1] != 0xCD or header[3] != 0x00:
LOG.warning("Bad response header: %s len=%i",
util.hexprint(header), len(header))
raise errors.RadioError("Bad response header")

cmd = serport.read(int(header[2]))
if len(cmd) != int(header[2]):
LOG.warning("Body short read: [%s] len=%i",
util.hexprint(cmd), len(cmd))
raise errors.RadioError("Command body short read")

footer = serport.read(4)

if len(footer) != 4:
LOG.warning("Footer short read: [%s] len=%i",
util.hexprint(footer), len(footer))
raise errors.RadioError("Footer short read")

if footer[2] != 0xDC or footer[3] != 0xBA:
LOG.debug("Reply before bad response footer (obfuscated)"
"len=0x%4.4x:\n%s", len(cmd), util.hexprint(cmd))
LOG.warning("Bad response footer: %s len=%i",
util.hexprint(footer), len(footer))
raise errors.RadioError("Bad response footer")

if DEBUG_SHOW_OBFUSCATED_COMMANDS:
LOG.debug("Received reply (obfuscated) len=0x%4.4x:\n%s",
len(cmd), util.hexprint(cmd))

cmd2 = xorarr(cmd)

LOG.debug("Received reply (unobfuscated) len=0x%4.4x:\n%s",
len(cmd2), util.hexprint(cmd2))

return cmd2


def _getstring(data: bytes, begin, maxlen):
tmplen = min(maxlen+1, len(data))
ss = [data[i] for i in range(begin, tmplen)]
key = 0
for key, val in enumerate(ss):
if val < ord(' ') or val > ord('~'):
return ''.join(chr(x) for x in ss[0:key])
return ''


def _sayhello(serport):
hellopacket = b"\x14\x05\x04\x00\x6a\x39\x57\x64"

tries = 5
while True:
LOG.debug("Sending hello packet")
_send_command(serport, hellopacket)
rep = _receive_reply(serport)
if rep:
break
tries -= 1
if tries == 0:
LOG.warning("Failed to initialise radio")
raise errors.RadioError("Failed to initialize radio")
if rep.startswith(b'\x18\x05'):
raise errors.RadioError("Radio is in programming mode, "
"restart radio into normal mode")
firmware = _getstring(rep, 4, 24)

LOG.info("Found firmware: %s", firmware)
return firmware


def _readmem(serport, offset, length):
LOG.debug("Sending readmem offset=0x%4.4x len=0x%4.4x", offset, length)

readmem = b"\x1b\x05\x08\x00" + \
struct.pack("<HBB", offset, length, 0) + \
b"\x6a\x39\x57\x64"
_send_command(serport, readmem)
rep = _receive_reply(serport)
if DEBUG_SHOW_MEMORY_ACTIONS:
LOG.debug("readmem Received data len=0x%4.4x:\n%s",
len(rep), util.hexprint(rep))
return rep[8:]


def _writemem(serport, data, offset):
LOG.debug("Sending writemem offset=0x%4.4x len=0x%4.4x",
offset, len(data))

if DEBUG_SHOW_MEMORY_ACTIONS:
LOG.debug("writemem sent data offset=0x%4.4x len=0x%4.4x:\n%s",
offset, len(data), util.hexprint(data))

dlen = len(data)
writemem = b"\x1d\x05" + \
struct.pack("<BBHBB", dlen+8, 0, offset, dlen, 1) + \
b"\x6a\x39\x57\x64"+data

_send_command(serport, writemem)
rep = _receive_reply(serport)

LOG.debug("writemem Received data: %s len=%i",
util.hexprint(rep), len(rep))

if (rep[0] == 0x1e and
rep[4] == (offset & 0xff) and
rep[5] == (offset >> 8) & 0xff):
return True

LOG.warning("Bad data from writemem")
raise errors.RadioError("Bad response to writemem")


def _resetradio(serport):
resetpacket = b"\xdd\x05\x00\x00"
_send_command(serport, resetpacket)


def do_download(radio):
"""download eeprom from radio"""
serport = radio.pipe
serport.timeout = 0.5
status = chirp_common.Status()
status.cur = 0
status.max = MEM_SIZE
status.msg = "Downloading from radio"
radio.status_fn(status)

eeprom = b""
f = _sayhello(serport)
if f:
radio.FIRMWARE_VERSION = f
else:
raise errors.RadioError("Failed to initialize radio")

addr = 0
while addr < MEM_SIZE:
data = _readmem(serport, addr, MEM_BLOCK)
status.cur = addr
radio.status_fn(status)

if data and len(data) == MEM_BLOCK:
eeprom += data
addr += MEM_BLOCK
else:
raise errors.RadioError("Memory download incomplete")

return memmap.MemoryMapBytes(eeprom)


def do_upload(radio):
"""upload configuration to radio eeprom"""
serport = radio.pipe
serport.timeout = 0.5
status = chirp_common.Status()
status.cur = 0
status.msg = "Uploading to radio"

if radio.upload_f4hwn:
status.max = MEM_SIZE-F4HWN_START
start_addr = F4HWN_START
stop_addr = MEM_SIZE
else:
if radio.upload_calibration:
status.max = F4HWN_START-CAL_START
start_addr = CAL_START
stop_addr = F4HWN_START
else:
status.max = PROG_SIZE
start_addr = 0
stop_addr = PROG_SIZE

radio.status_fn(status)

f = _sayhello(serport)
if f:
radio.FIRMWARE_VERSION = f
else:
return False

addr = start_addr
while addr < stop_addr:
dat = radio.get_mmap()[addr:addr+MEM_BLOCK]
_writemem(serport, dat, addr)
status.cur = addr - start_addr
radio.status_fn(status)
if dat:
addr += MEM_BLOCK
else:
raise errors.RadioError("Memory upload incomplete")
status.msg = "Uploaded OK"

_resetradio(serport)

return True


def min_max_def(value, min_val, max_val, default):
"""returns value if in bounds or default otherwise"""
if min_val is not None and value < min_val:
return default
if max_val is not None and value > max_val:
return default
return value


def list_def(value, lst, default):
"""return value if is in the list, default otherwise"""
if isinstance(default, str):
default = lst.index(default)
if value < 0 or value >= len(lst):
return default
return value


@directory.register
class UVK5RadioEgzumer(chirp_common.CloneModeRadio):
"""Quansheng UV-K5 (egzumer + f4hwn)"""
VENDOR = "Quansheng"
MODEL = "UV-K5 (egzumer + f4hwn)"
BAUD_RATE = 38400
NEEDS_COMPAT_SERIAL = False
FIRMWARE_VERSION = ""

# upload_calibration = False
upload_f4hwn = False

def _get_bands(self):
is_wide = self._memobj.BUILD_OPTIONS.ENABLE_WIDE_RX \
if self._memobj is not None else True
bands = BANDS_WIDE if is_wide else BANDS_STANDARD
return bands

def _find_band(self, hz):
mhz = hz/1000000.0
bands = self._get_bands()
for bnd, rng in bands.items():
if rng[0] <= mhz <= rng[1]:
return bnd
return False

def _get_vfo_channel_names(self):
"""generates VFO_CHANNEL_NAMES"""
bands = self._get_bands()
names = []
for bnd, rng in bands.items():
name = f"F{bnd + 1}({round(rng[0])}M-{round(rng[1])}M)"
names.append(name + "A")
names.append(name + "B")
return names

def _get_specials(self):
"""generates SPECIALS"""
specials = {}
for idx, name in enumerate(self._get_vfo_channel_names()):
specials[name] = 200 + idx
return specials

@classmethod
def get_prompts(cls):
rp = chirp_common.RadioPrompts()
rp.experimental = \
'This is an experimental driver for the Quansheng UV-K5. ' \
'It may harm your radio, or worse. Use at your own risk.\n\n' \
'Before attempting to do any changes please download' \
'the memory image from the radio with chirp ' \
'and keep it. This can be later used to recover the ' \
'original settings. \n\n' \
'some details are not yet implemented'
rp.pre_download = \
"1. Turn radio on.\n" \
"2. Connect cable to mic/spkr connector.\n" \
"3. Make sure connector is firmly connected.\n" \
"4. Click OK to download image from device.\n\n" \
"It may not work if you turn on the radio " \
"with the cable already attached\n"
rp.pre_upload = \
"1. Turn radio on.\n" \
"2. Connect cable to mic/spkr connector.\n" \
"3. Make sure connector is firmly connected.\n" \
"4. Click OK to upload the image to device.\n\n" \
"It may not work if you turn on the radio " \
"with the cable already attached"
return rp

# Return information about this radio's features, including
# how many memories it has, what bands it supports, etc
def get_features(self):
rf = chirp_common.RadioFeatures()
rf.has_bank = False
rf.valid_dtcs_codes = DTCS_CODES
rf.has_rx_dtcs = True
rf.has_ctone = True
rf.has_settings = True
rf.has_comment = False
rf.valid_name_length = 10
rf.valid_power_levels = UVK5_POWER_LEVELS
rf.valid_special_chans = self._get_vfo_channel_names()
rf.valid_duplexes = ["", "-", "+", "off"]

steps = STEPS.copy()
steps.sort()
rf.valid_tuning_steps = steps

rf.valid_tmodes = ["", "Tone", "TSQL", "DTCS", "Cross"]
rf.valid_cross_modes = ["Tone->Tone", "Tone->DTCS", "DTCS->Tone",
"->Tone", "->DTCS", "DTCS->", "DTCS->DTCS"]

rf.valid_characters = chirp_common.CHARSET_ASCII
rf.valid_modes = ["FM", "NFM", "AM", "NAM", "USB"]

rf.valid_skips = [""]

# This radio supports memories 1-200, 201-214 are the VFO memories
rf.memory_bounds = (1, 200)

# This is what the BK4819 chip supports
# Will leave it in a comment, might be useful someday
# rf.valid_bands = [(18000000, 620000000),
# (840000000, 1300000000)
# ]
rf.valid_bands = []
bands = self._get_bands()
for _, rng in bands.items():
rf.valid_bands.append(
(int(rng[0]*1000000), int(rng[1]*1000000)))
return rf

# Do a download of the radio from the serial port
def sync_in(self):
self._mmap = do_download(self)
self.process_mmap()

# Do an upload of the radio to the serial port
def sync_out(self):
do_upload(self)

# Convert the raw byte array into a memory object structure
def process_mmap(self):
self._memobj = bitwise.parse(MEM_FORMAT, self._mmap)

# Return a raw representation of the memory object, which
# is very helpful for development
def get_raw_memory(self, number):
return repr(self._memobj.channel[number-1])

def validate_memory(self, mem):
msgs = super().validate_memory(mem)

if mem.duplex == 'off':
return msgs

# find tx frequency
if mem.duplex == '-':
txfreq = mem.freq - mem.offset
elif mem.duplex == '+':
txfreq = mem.freq + mem.offset
else:
txfreq = mem.freq

# find band
band = self._find_band(txfreq)
if band is False:
msg = f"Transmit frequency {txfreq/1000000.0:.4f}MHz " \
"is not supported by this radio"
msgs.append(chirp_common.ValidationWarning(msg))

band = self._find_band(mem.freq)
if band is False:
msg = f"The frequency {mem.freq/1000000.0:%.4f}MHz " \
"is not supported by this radio"
msgs.append(chirp_common.ValidationWarning(msg))

return msgs

def _set_tone(self, mem, _mem):
((txmode, txtone, txpol),
(rxmode, rxtone, rxpol)) = chirp_common.split_tone_encode(mem)

if txmode == "Tone":
txtoval = CTCSS_TONES.index(txtone)
txmoval = 0b01
elif txmode == "DTCS":
txmoval = txpol == "R" and 0b11 or 0b10
txtoval = DTCS_CODES.index(txtone)
else:
txmoval = 0
txtoval = 0

if rxmode == "Tone":
rxtoval = CTCSS_TONES.index(rxtone)
rxmoval = 0b01
elif rxmode == "DTCS":
rxmoval = rxpol == "R" and 0b11 or 0b10
rxtoval = DTCS_CODES.index(rxtone)
else:
rxmoval = 0
rxtoval = 0

_mem.rxcodeflag = rxmoval
_mem.txcodeflag = txmoval
_mem.rxcode = rxtoval
_mem.txcode = txtoval

def _get_tone(self, mem, _mem):
rxtype = _mem.rxcodeflag
txtype = _mem.txcodeflag
rx_tmode = TMODES[rxtype]
tx_tmode = TMODES[txtype]

rx_tone = tx_tone = None

if tx_tmode == "Tone":
if _mem.txcode < len(CTCSS_TONES):
tx_tone = CTCSS_TONES[_mem.txcode]
else:
tx_tone = 0
tx_tmode = ""
elif tx_tmode == "DTCS":
if _mem.txcode < len(DTCS_CODES):
tx_tone = DTCS_CODES[_mem.txcode]
else:
tx_tone = 0
tx_tmode = ""

if rx_tmode == "Tone":
if _mem.rxcode < len(CTCSS_TONES):
rx_tone = CTCSS_TONES[_mem.rxcode]
else:
rx_tone = 0
rx_tmode = ""
elif rx_tmode == "DTCS":
if _mem.rxcode < len(DTCS_CODES):
rx_tone = DTCS_CODES[_mem.rxcode]
else:
rx_tone = 0
rx_tmode = ""

tx_pol = txtype == 0x03 and "R" or "N"
rx_pol = rxtype == 0x03 and "R" or "N"

chirp_common.split_tone_decode(mem, (tx_tmode, tx_tone, tx_pol),
(rx_tmode, rx_tone, rx_pol))

# Extract a high-level memory object from the low-level memory map
# This is called to populate a memory in the UI
def get_memory(self, number):

mem = chirp_common.Memory()

if isinstance(number, str):
ch_num = self._get_specials()[number]
mem.extd_number = number
else:
ch_num = number - 1

mem.number = ch_num + 1

_mem = self._memobj.channel[ch_num]

is_empty = False
# We'll consider any blank (i.e. 0MHz frequency) to be empty
if (_mem.freq == 0xffffffff) or (_mem.freq == 0):
is_empty = True

# We'll also look at the channel attributes if a memory has them
tmpscn = 0
tmp_comp = 0
if ch_num < 200:
_mem3 = self._memobj.ch_attr[ch_num]
# free memory bit
is_empty |= _mem3.is_free
# scanlists
tmpscn = _mem3.is_scanlist1 + _mem3.is_scanlist2 * 2
tmp_comp = list_def(_mem3.compander, COMPANDER_LIST, 0)
elif ch_num < 214:
att_num = 200 + int((ch_num - 200) / 2)
_mem3 = self._memobj.ch_attr[att_num]
is_empty |= _mem3.is_free
tmp_comp = list_def(_mem3.compander, COMPANDER_LIST, 0)

if is_empty:
mem.empty = True
# set some sane defaults:
mem.power = UVK5_POWER_LEVELS[2]
mem.extra = RadioSettingGroup("Extra", "extra")

val = RadioSettingValueBoolean(False)
rs = RadioSetting("busyChLockout", "BusyCL", val)
mem.extra.append(rs)

val = RadioSettingValueBoolean(False)
rs = RadioSetting("frev", "FreqRev", val)
mem.extra.append(rs)

val = RadioSettingValueList(PTTID_LIST)
rs = RadioSetting("pttid", "PTTID", val)
mem.extra.append(rs)

val = RadioSettingValueBoolean(False)
rs = RadioSetting("dtmfdecode", "DTMF decode", val)
if self._memobj.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
mem.extra.append(rs)

val = RadioSettingValueList(SCRAMBLER_LIST)
rs = RadioSetting("scrambler", "Scrambler", val)
mem.extra.append(rs)

val = RadioSettingValueList(COMPANDER_LIST)
rs = RadioSetting("compander", "Compander", val)
mem.extra.append(rs)

val = RadioSettingValueList(SCANLIST_LIST)
rs = RadioSetting("scanlists", "Scanlists", val)
mem.extra.append(rs)

# actually the step and duplex are overwritten by chirp based on
# bandplan. they are here to document sane defaults for IARU r1
# mem.tuning_step = 25.0
# mem.duplex = "off"

return mem

if ch_num > 199:
mem.name = self._get_vfo_channel_names()[ch_num-200]
mem.immutable = ["name", "scanlists"]
else:
_mem2 = self._memobj.channelname[ch_num]
for char in _mem2.name:
if str(char) == "\xFF" or str(char) == "\x00":
break
mem.name += str(char)
mem.name = mem.name.rstrip()

# Convert your low-level frequency to Hertz
mem.freq = int(_mem.freq)*10
mem.offset = int(_mem.offset)*10

if mem.offset == 0:
mem.duplex = ''
else:
if _mem.offsetDir == FLAGS1_OFFSET_MINUS:
if _mem.freq == _mem.offset:
# fake tx disable by setting tx to 0 MHz
mem.duplex = 'off'
mem.offset = 0
else:
mem.duplex = '-'
elif _mem.offsetDir == FLAGS1_OFFSET_PLUS:
mem.duplex = '+'
else:
mem.duplex = ''

# tone data
self._get_tone(mem, _mem)

# mode
temp_modes = self.get_features().valid_modes
temp_modul = _mem.modulation*2 + _mem.bandwidth
if temp_modul < len(temp_modes):
mem.mode = temp_modes[temp_modul]
elif temp_modul == 5: # USB with narrow setting
mem.mode = temp_modes[4]
elif temp_modul >= len(temp_modes):
mem.mode = "UNSUPPORTED BY CHIRP"

# tuning step
tstep = _mem.step
if tstep < len(STEPS):
mem.tuning_step = STEPS[tstep]
else:
mem.tuning_step = 2.5

# power
if _mem.txpower == POWER_HIGH:
mem.power = UVK5_POWER_LEVELS[2]
elif _mem.txpower == POWER_MEDIUM:
mem.power = UVK5_POWER_LEVELS[1]
else:
mem.power = UVK5_POWER_LEVELS[0]

# We'll consider any blank (i.e. 0MHz frequency) to be empty
if (_mem.freq == 0xffffffff) or (_mem.freq == 0):
mem.empty = True
else:
mem.empty = False

mem.extra = RadioSettingGroup("Extra", "extra")

# BusyCL
val = RadioSettingValueBoolean(_mem.busyChLockout)
rs = RadioSetting("busyChLockout", "Busy Ch Lockout (BusyCL)", val)
mem.extra.append(rs)

# Frequency reverse
val = RadioSettingValueBoolean(_mem.freq_reverse)
rs = RadioSetting("frev", "Reverse Frequencies (R)", val)
mem.extra.append(rs)

# PTTID
pttid = list_def(_mem.dtmf_pttid, PTTID_LIST, 0)
val = RadioSettingValueList(PTTID_LIST, None, pttid)
rs = RadioSetting("pttid", "PTT ID (PTT ID)", val)
mem.extra.append(rs)

# DTMF DECODE
val = RadioSettingValueBoolean(_mem.dtmf_decode)
rs = RadioSetting("dtmfdecode", "DTMF decode (D Decd)", val)
if self._memobj.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
mem.extra.append(rs)

# Scrambler
enc = list_def(_mem.scrambler, SCRAMBLER_LIST, 0)
val = RadioSettingValueList(SCRAMBLER_LIST, None, enc)
rs = RadioSetting("scrambler", "Scrambler (Scramb)", val)
mem.extra.append(rs)

# Compander
val = RadioSettingValueList(COMPANDER_LIST, None, tmp_comp)
rs = RadioSetting("compander", "Compander (Compnd)", val)
mem.extra.append(rs)

val = RadioSettingValueList(SCANLIST_LIST, None, tmpscn)
rs = RadioSetting("scanlists", "Scanlists (SList)", val)
mem.extra.append(rs)

return mem

def set_settings(self, settings):
_mem = self._memobj
for element in settings:
if not isinstance(element, RadioSetting):
self.set_settings(element)
continue

elname = element.get_name()

# basic settings

# VFO_A e80 ScreenChannel_A
if elname == "VFO_A_chn":
_mem.ScreenChannel_A = int(element.value)
if _mem.ScreenChannel_A < 200:
_mem.MrChannel_A = _mem.ScreenChannel_A
elif _mem.ScreenChannel_A < 207:
_mem.FreqChannel_A = _mem.ScreenChannel_A
else:
_mem.NoaaChannel_A = _mem.ScreenChannel_A

# VFO_B e83
elif elname == "VFO_B_chn":
_mem.ScreenChannel_B = int(element.value)
if _mem.ScreenChannel_B < 200:
_mem.MrChannel_B = _mem.ScreenChannel_B
elif _mem.ScreenChannel_B < 207:
_mem.FreqChannel_B = _mem.ScreenChannel_B
else:
_mem.NoaaChannel_B = _mem.ScreenChannel_B

# TX_VFO channel selected A,B
elif elname == "TX_VFO":
_mem.TX_VFO = int(element.value)

# call channel
elif elname == "call_channel":
_mem.call_channel = int(element.value)

# squelch
elif elname == "squelch":
_mem.squelch = int(element.value)

# TOT
elif elname == "tot":
_mem.max_talk_time = int(element.value)

# NOAA autoscan
elif elname == "noaa_autoscan":
_mem.noaa_autoscan = int(element.value)

# VOX
elif elname == "vox":
voxvalue = int(element.value)
_mem.vox_switch = voxvalue > 0
_mem.vox_level = (voxvalue - 1) if _mem.vox_switch else 0

# mic gain
elif elname == "mic_gain":
_mem.mic_gain = int(element.value)

# Channel display mode
elif elname == "channel_display_mode":
_mem.channel_display_mode = int(element.value)

# RX Mode
elif elname == "rx_mode":
tmptxmode = int(element.value)
tmpmainvfo = _mem.TX_VFO + 1
_mem.crossband = tmpmainvfo * bool(tmptxmode & 0b10)
_mem.dual_watch = tmpmainvfo * bool(tmptxmode & 0b01)

# Battery Save
elif elname == "battery_save":
_mem.battery_save = int(element.value)

# Backlight auto mode
elif elname == "backlight_time":
_mem.backlight_time = int(element.value)

# Backlight min
elif elname == "backlight_min":
_mem.backlight_min = int(element.value)

# Backlight max
elif elname == "backlight_max":
_mem.backlight_max = int(element.value)

# Backlight TX_RX
elif elname == "backlight_on_TX_RX":
_mem.backlight_on_TX_RX = int(element.value)
# AM_fix
elif elname == "AM_fix":
_mem.AM_fix = int(element.value)

# mic_bar
elif elname == "mem.mic_bar":
_mem.mic_bar = int(element.value)

# Batterie txt
elif elname == "_mem.battery_text":
_mem.battery_text = int(element.value)

# Tail tone elimination
elif elname == "ste":
_mem.ste = int(element.value)

# VFO Open
elif elname == "freq_mode_allowed":
_mem.freq_mode_allowed = int(element.value)

# Beep control
elif elname == "button_beep":
_mem.button_beep = int(element.value)

# Scan resume mode
elif elname == "scan_resume_mode":
_mem.scan_resume_mode = int(element.value)

# Keypad lock
elif elname == "key_lock":
_mem.key_lock = int(element.value)

# Auto keypad lock
elif elname == "auto_keypad_lock":
_mem.auto_keypad_lock = int(element.value)

# Power on display mode
elif elname == "welcome_mode":
_mem.power_on_dispmode = int(element.value)

# Keypad Tone
elif elname == "voice":
_mem.voice = int(element.value)

elif elname == "s0_level":
_mem.s0_level = -int(element.value)

elif elname == "s9_level":
_mem.s9_level = -int(element.value)

# elif elname == "password":
# if element.value.get_value() is None or element.value == "":
# _mem.password = 0xFFFFFFFF
# else:
# _mem.password = int(element.value)

# Alarm mode
elif elname == "alarm_mode":
_mem.alarm_mode = int(element.value)

# Reminding of end of talk
elif elname == "roger_beep":
_mem.roger_beep = int(element.value)

# Repeater tail tone elimination
elif elname == "rp_ste":
_mem.rp_ste = int(element.value)

# Logo string 1
elif elname == "logo1":
bts = str(element.value).rstrip("\x20\xff\x00")+"\x00"*12
_mem.logo_line1 = bts[0:12]+"\x00\xff\xff\xff"

# Logo string 2
elif elname == "logo2":
bts = str(element.value).rstrip("\x20\xff\x00")+"\x00"*12
_mem.logo_line2 = bts[0:12]+"\x00\xff\xff\xff"

# unlock settings

# FLOCK
elif elname == "int_flock":
_mem.int_flock = int(element.value)

# 350TX
elif elname == "int_350tx":
_mem.int_350tx = int(element.value)

# KILLED
elif elname == "int_KILLED":
_mem.int_KILLED = int(element.value)

# 200TX
elif elname == "int_200tx":
_mem.int_200tx = int(element.value)

# 500TX
elif elname == "int_500tx":
_mem.int_500tx = int(element.value)

# 350EN
elif elname == "int_350en":
_mem.int_350en = int(element.value)

# SCREN
elif elname == "int_scren":
_mem.int_scren = int(element.value)

# battery type
elif elname == "Battery_type":
_mem.Battery_type = int(element.value)

# set low_power f4hwn
elif elname == "set_low":
_mem.set_low = int(element.value)

# set ptt f4hwn
elif elname == "set_ptt":
_mem.set_ptt = int(element.value)

# set tot f4hwn
elif elname == "set_tot":
_mem.set_tot = int(element.value)

# set eot f4hwn
elif elname == "set_eot":
_mem.set_eot = int(element.value)

# set_contrast f4hwn
elif elname == "set_contrast":
_mem.set_contrast = int(element.value)

# set inv f4hwn
elif elname == "set_inv":
_mem.set_inv = int(element.value)

# set lck f4hwn
elif elname == "set_lck":
_mem.set_lck = int(element.value)

# set met f4hwn
elif elname == "set_met":
_mem.set_met = int(element.value)
# fm radio
for i in range(1, 21):
freqname = "FM_" + str(i)
if elname == freqname:
val = str(element.value).strip()
try:
val2 = int(float(val)*10)
except Exception:
val2 = 0xffff

if val2 < FMMIN*10 or val2 > FMMAX*10:
val2 = 0xffff
# raise errors.InvalidValueError(
# "FM radio frequency should be a value "
# "in the range %.1f - %.1f" % (FMMIN , FMMAX))
_mem.fmfreq[i-1] = val2

# dtmf settings
if elname == "dtmf_side_tone":
_mem.dtmf.side_tone = int(element.value)

elif elname == "dtmf_separate_code":
_mem.dtmf.separate_code = str(element.value)

elif elname == "dtmf_group_call_code":
_mem.dtmf.group_call_code = element.value

elif elname == "dtmf_decode_response":
_mem.dtmf.decode_response = int(element.value)

elif elname == "dtmf_auto_reset_time":
_mem.dtmf.auto_reset_time = int(element.value)

elif elname == "dtmf_preload_time":
_mem.dtmf.preload_time = int(int(element.value)/10)

elif elname == "dtmf_first_code_persist_time":
_mem.dtmf.first_code_persist_time = int(int(element.value)/10)

elif elname == "dtmf_hash_persist_time":
_mem.dtmf.hash_persist_time = int(int(element.value)/10)

elif elname == "dtmf_code_persist_time":
_mem.dtmf.code_persist_time = \
int(int(element.value)/10)

elif elname == "dtmf_code_interval_time":
_mem.dtmf.code_interval_time = \
int(int(element.value)/10)

elif elname == "dtmf_permit_remote_kill":
_mem.dtmf.permit_remote_kill = \
int(element.value)

elif elname == "dtmf_dtmf_local_code":
k = str(element.value).rstrip("\x20\xff\x00") + "\x00"*3
_mem.dtmf.local_code = k[0:3]

elif elname == "dtmf_dtmf_up_code":
k = str(element.value).strip("\x20\xff\x00") + "\x00"*16
_mem.dtmf.up_code = k[0:16]

elif elname == "dtmf_dtmf_down_code":
k = str(element.value).rstrip("\x20\xff\x00") + "\x00"*16
_mem.dtmf.down_code = k[0:16]

elif elname == "dtmf_kill_code":
k = str(element.value).strip("\x20\xff\x00") + "\x00"*5
_mem.dtmf.kill_code = k[0:5]

elif elname == "dtmf_revive_code":
k = str(element.value).strip("\x20\xff\x00") + "\x00"*5
_mem.dtmf.revive_code = k[0:5]

elif elname == "live_DTMF_decoder":
_mem.live_DTMF_decoder = int(element.value)

# dtmf contacts
for i in range(1, 17):
varname = "DTMF_" + str(i)
if elname == varname:
k = str(element.value).rstrip("\x20\xff\x00") + "\x00"*8
_mem.dtmfcontact[i-1].name = k[0:8]

varnumname = "DTMFNUM_" + str(i)
if elname == varnumname:
k = str(element.value).rstrip("\x20\xff\x00") + "\xff"*3
_mem.dtmfcontact[i-1].number = k[0:3]

# scanlist stuff
if elname == "slDef":
_mem.slDef = int(element.value)

elif elname == "sl1PriorEnab":
_mem.sl1PriorEnab = int(element.value)

elif elname == "sl2PriorEnab":
_mem.sl2PriorEnab = int(element.value)

elif elname in ["sl1PriorCh1", "sl1PriorCh2", "sl2PriorCh1",
"sl2PriorCh2"]:
val = int(element.value)

if val > 200 or val < 1:
val = 0xff
else:
val -= 1

_mem[elname] = val

if elname == "key1_shortpress_action":
_mem.key1_shortpress_action = KEYACTIONS_LIST.index(element.value)

elif elname == "key1_longpress_action":
_mem.key1_longpress_action = KEYACTIONS_LIST.index(element.value)

elif elname == "key2_shortpress_action":
_mem.key2_shortpress_action = KEYACTIONS_LIST.index(element.value)

elif elname == "key2_longpress_action":
_mem.key2_longpress_action = KEYACTIONS_LIST.index(element.value)

elif elname == "keyM_longpress_action":
_mem.keyM_longpress_action = KEYACTIONS_LIST.index(element.value)

elif elname == "upload_calibration":
self._upload_calibration = bool(element.value)

elif element.changed() and elname.startswith("_mem.cal."):
exec(elname + " = element.value.get_value()")

def get_settings(self):
_mem = self._memobj
basic = RadioSettingGroup("basic", "Basic Settings")
advanced = RadioSettingGroup("advanced", "Advanced Settings")
keya = RadioSettingGroup("keya", "Programmable Keys")
dtmf = RadioSettingGroup("dtmf", "DTMF Settings")
dtmfc = RadioSettingGroup("dtmfc", "DTMF Contacts")
scanl = RadioSettingGroup("scn", "Scan Lists")
unlock = RadioSettingGroup("unlock", "Unlock Settings")
fmradio = RadioSettingGroup("fmradio", "FM Radio")
calibration = RadioSettingGroup("calibration", "Calibration")

roinfo = RadioSettingGroup("roinfo", "Driver Information + Link to get latest driver F4HWN")
top = RadioSettings()
top.append(basic)
top.append(advanced)
top.append(keya)
top.append(dtmf)
if _mem.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
top.append(dtmfc)
top.append(scanl)
top.append(unlock)
if _mem.BUILD_OPTIONS.ENABLE_FMRADIO:
top.append(fmradio)
top.append(roinfo)
top.append(calibration)

# helper function
def append_label(radio_setting, label, descr=""):
if not hasattr(append_label, 'idx'):
append_label.idx = 0

val = RadioSettingValueString(len(descr), len(descr), descr)
val.set_mutable(False)
rs = RadioSetting("label" + str(append_label.idx), label, val)
append_label.idx += 1
radio_setting.append(rs)

# Programmable keys
def get_action(action_num):
""""get actual key action"""
has_alarm = self._memobj.BUILD_OPTIONS.ENABLE_ALARM
has1750 = self._memobj.BUILD_OPTIONS.ENABLE_TX1750
has_flashlight = self._memobj.BUILD_OPTIONS.ENABLE_FLASHLIGHT
lst = KEYACTIONS_LIST.copy()
if not has_alarm:
lst.remove("ALARM")
if not has1750:
lst.remove("1750Hz TONE")
if not has_flashlight:
lst.remove("FLASHLIGHT")
lst.remove("BKL_MIN_N/U") # F4HWN remove this

action_num = int(action_num)
if action_num >= len(KEYACTIONS_LIST) or \
KEYACTIONS_LIST[action_num] not in lst:
action_num = 0
return lst, KEYACTIONS_LIST[action_num]

val1s = RadioSettingValueList(*get_action(_mem.key1_shortpress_action))
rs = RadioSetting("key1_shortpress_action",
"Side key 1 short press (F1Shrt)", val1s)
rs.set_doc('F1Shrt: Select what action do you want to do when press this F1 key for a SHORT time, F1 key is locate on the side, the first key under the PTT')
keya.append(rs)

val1l = RadioSettingValueList(*get_action(_mem.key1_longpress_action))
rs = RadioSetting("key1_longpress_action",
"Side key 1 long press (F1Long)", val1l)
rs.set_doc('F1Long: Select what action do you want to do when press this F1 key for a LONG time, F1 key is locate on the side, the first key under the PTT')
keya.append(rs)

val2s = RadioSettingValueList(*get_action(_mem.key2_shortpress_action))
rs = RadioSetting("key2_shortpress_action",
"Side key 2 short press (F2Shrt)", val2s)
rs.set_doc('F2Shrt: Select what action do you want to do when press this F2 key for a SHORT time, F2 key is locate on the side, the second key under the PTT')
keya.append(rs)

val2l = RadioSettingValueList(*get_action(_mem.key2_longpress_action))
rs = RadioSetting("key2_longpress_action",
"Side key 2 long press (F2Long)", val2l)
rs.set_doc('F2Long: Select what action do you want to do when press this F2 key for a LONG time, F2 key is locate on the side, the second key under the PTT')
keya.append(rs)

valm = RadioSettingValueList(*get_action(_mem.keyM_longpress_action))
rs = RadioSetting("keyM_longpress_action",
"Menu key long press (M Long)", valm)
rs.set_doc('M Long: Select what action do you want to do when press this M key for a LONG time, M key is locate under the LCD, on the left side')
keya.append(rs)

# ----------------- DTMF settings

tmpval = str(_mem.dtmf.separate_code)
if tmpval not in DTMF_CODE_CHARS:
tmpval = '*'
val = RadioSettingValueString(1, 1, tmpval)
val.set_charset(DTMF_CODE_CHARS)
sep_code_setting = RadioSetting("dtmf_separate_code",
"Separate Code", val)
sep_code_setting.set_doc('Separate Code:')

tmpval = str(_mem.dtmf.group_call_code)
if tmpval not in DTMF_CODE_CHARS:
tmpval = '#'
val = RadioSettingValueString(1, 1, tmpval)
val.set_charset(DTMF_CODE_CHARS)
group_code_setting = RadioSetting("dtmf_group_call_code",
"Group Call Code", val)
group_code_setting.set_doc('Group Call Code: ')

tmpval = min_max_def(_mem.dtmf.first_code_persist_time * 10,
30, 1000, 300)
val = RadioSettingValueInteger(30, 1000, tmpval, 10)
first_code_per_setting = \
RadioSetting("dtmf_first_code_persist_time",
"First code persist time (ms)", val)
first_code_per_setting.set_doc('First code persist time: how long to you want the first dtmf will be sent in milisecond')

tmpval = min_max_def(_mem.dtmf.hash_persist_time * 10, 30, 1000, 300)
val = RadioSettingValueInteger(30, 1000, tmpval, 10)
spec_per_setting = RadioSetting("dtmf_hash_persist_time",
"#/* persist time (ms)", val)
spec_per_setting.set_doc('#/* persist time: how long this code # or / or * will be sent in milisecond')
tmpval = min_max_def(_mem.dtmf.code_persist_time * 10, 30, 1000, 300)
val = RadioSettingValueInteger(30, 1000, tmpval, 10)
code_per_setting = RadioSetting("dtmf_code_persist_time",
"Code persist time (ms)", val)
code_per_setting.set_doc('Code persist time: how long the code will be sent in milisecond')

tmpval = min_max_def(_mem.dtmf.code_interval_time * 10, 30, 1000, 300)
val = RadioSettingValueInteger(30, 1000, tmpval, 10)
code_int_setting = RadioSetting("dtmf_code_interval_time",
"Code interval time (ms)", val)
code_int_setting.set_doc('Code interval time: how long to wait between each code sent in milisecond')

tmpval = str(_mem.dtmf.local_code).upper().strip(
"\x00\xff\x20")
for i in tmpval:
if i in DTMF_CHARS_ID:
continue
tmpval = "103"
break
val = RadioSettingValueString(3, 3, tmpval)
val.set_charset(DTMF_CHARS_ID)
ani_id_setting = \
RadioSetting("dtmf_dtmf_local_code",
"Local code (3 chars 0-9 ABCD) (ANI ID)", val)
ani_id_setting.set_doc('ANI ID: DTMF communication radio ID')

tmpval = str(_mem.dtmf.up_code).upper().strip(
"\x00\xff\x20")
for i in tmpval:
if i in DTMF_CHARS_UPDOWN or i == "":
continue
else:
tmpval = "123"
break
val = RadioSettingValueString(1, 16, tmpval)
val.set_charset(DTMF_CHARS_UPDOWN)
up_code_setting = \
RadioSetting("dtmf_dtmf_up_code",
"Up code (1-16 chars 0-9 ABCD*#) (UPCode)", val)
up_code_setting.set_doc('UPCode: DTMF code that is sent at the beginning of transmission ')

tmpval = str(_mem.dtmf.down_code).upper().strip(
"\x00\xff\x20")
for i in tmpval:
if i in DTMF_CHARS_UPDOWN:
continue
else:
tmpval = "456"
break
val = RadioSettingValueString(1, 16, tmpval)
val.set_charset(DTMF_CHARS_UPDOWN)
dw_code_setting = \
RadioSetting("dtmf_dtmf_down_code",
"Down code (1-16 chars 0-9 ABCD*#) (DWCode)", val)
dw_code_setting.set_doc('DWCode: DTMF code that is sent at the end of a transmission ')

val = RadioSettingValueBoolean(_mem.dtmf.side_tone)
dtmf_side_tone_setting = \
RadioSetting("dtmf_side_tone",
"DTMF Sidetone on speaker when sent (D ST)", val)
dtmf_side_tone_setting.set_doc('D ST: DTMF side tone switch, lets you hear transmitted tones in the radio speaker ')

tmpval = list_def(_mem.dtmf.decode_response,
DTMF_DECODE_RESPONSE_LIST, 0)
val = RadioSettingValueList(DTMF_DECODE_RESPONSE_LIST, None, tmpval)
dtmf_resp_setting = RadioSetting("dtmf_decode_response",
"Decode Response (D Resp)", val)
dtmf_resp_setting.set_doc('D Resp: DTMF decoding response ')

tmpval = min_max_def(_mem.dtmf.auto_reset_time, 5, 60, 10)
val = RadioSettingValueInteger(5, 60, tmpval)
d_hold_setting = RadioSetting("dtmf_auto_reset_time",
"Auto reset time (s) (D Hold)", val)
d_hold_setting.set_doc('D Hold: DTMF auto reset time ')

# D Prel
tmpval = min_max_def(_mem.dtmf.preload_time * 10, 30, 990, 300)
val = RadioSettingValueInteger(30, 990, tmpval, 10)
d_prel_setting = RadioSetting("dtmf_preload_time",
"Pre-load time (ms) (D Prel)", val)
d_prel_setting.set_doc('D Prel: DTMF pre-load time ')
# D LIVE
val = RadioSettingValueBoolean(_mem.live_DTMF_decoder)
d_live_setting = \
RadioSetting("live_DTMF_decoder", "Displays DTMF codes"
" received in the middle of the screen (D Live)", val)
d_live_setting.set_doc('D Live: displays DTMF codes received by radio in the middle of the screen ')
val = RadioSettingValueBoolean(_mem.dtmf.permit_remote_kill)
perm_kill_setting = RadioSetting("dtmf_permit_remote_kill",
"Permit remote kill", val)

tmpval = str(_mem.dtmf.kill_code).upper().strip(
"\x00\xff\x20")
for i in tmpval:
if i in DTMF_CHARS_KILL:
continue
else:
tmpval = "77777"
break
if not len(tmpval) == 5:
tmpval = "77777"
val = RadioSettingValueString(5, 5, tmpval)
val.set_charset(DTMF_CHARS_KILL)
kill_code_setting = RadioSetting("dtmf_kill_code",
"Kill code (5 chars 0-9 ABCD)", val)

tmpval = str(_mem.dtmf.revive_code).upper().strip(
"\x00\xff\x20")
for i in tmpval:
if i in DTMF_CHARS_KILL:
continue
else:
tmpval = "88888"
break
if not len(tmpval) == 5:
tmpval = "88888"
val = RadioSettingValueString(5, 5, tmpval)
val.set_charset(DTMF_CHARS_KILL)
rev_code_setting = RadioSetting("dtmf_revive_code",
"Revive code (5 chars 0-9 ABCD)", val)

val = RadioSettingValueBoolean(_mem.int_KILLED)
killed_setting = RadioSetting("int_KILLED", "DTMF kill lock", val)

# ----------------- DTMF Contacts

append_label(dtmfc, "DTMF Contacts (D List)",
"All DTMF Contacts are 3 codes "
"(valid: 0-9 * # ABCD), "
"or an empty string")

for i in range(1, 17):
varname = "DTMF_"+str(i)
varnumname = "DTMFNUM_"+str(i)
vardescr = "DTMF Contact "+str(i)+" name"
varinumdescr = "DTMF Contact "+str(i)+" number"

cntn = str(_mem.dtmfcontact[i-1].name).strip("\x20\x00\xff")
cntnum = str(_mem.dtmfcontact[i-1].number).strip("\x20\x00\xff")

val = RadioSettingValueString(0, 8, cntn)
rs = RadioSetting(varname, vardescr, val)
dtmfc.append(rs)

val = RadioSettingValueString(0, 3, cntnum)
val.set_charset(DTMF_CHARS)
rs = RadioSetting(varnumname, varinumdescr, val)
dtmfc.append(rs)

# ----------------- Scan Lists

tmpscanl = list_def(_mem.slDef, SCANLIST_SELECT_LIST, 0)
val = RadioSettingValueList(SCANLIST_SELECT_LIST, None, tmpscanl)
rs = RadioSetting("slDef", "Default scanlist (SList)", val)
rs.set_doc('SList: Selects which channel is used by memory channel scanner ')
scanl.append(rs)

val = RadioSettingValueBoolean(_mem.sl1PriorEnab)
rs = RadioSetting("sl1PriorEnab", "List 1 priority channel scan", val)
rs.set_doc('List 1 priority: is this list as priority ')
scanl.append(rs)

ch_list = ["None"]
for ch in range(1, 201):
ch_list.append("Channel M" + str(ch))

tmpch = list_def(_mem.sl1PriorCh1 + 1, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpch)
rs = RadioSetting("sl1PriorCh1", "List 1 priority channel 1", val)
rs.set_doc('List 1 priority channel 1: select the channel you want for priority ')
scanl.append(rs)

tmpch = list_def(_mem.sl1PriorCh2 + 1, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpch)
rs = RadioSetting("sl1PriorCh2", "List 1 priority channel 2", val)
rs.set_doc('List 1 priority channel 2: select the channel you want for priority ')
scanl.append(rs)

val = RadioSettingValueBoolean(_mem.sl2PriorEnab)
rs = RadioSetting("sl2PriorEnab", "List 2 priority channel scan", val)
rs.set_doc('List 2 priority: is this list as priority ')
scanl.append(rs)

tmpch = list_def(_mem.sl2PriorCh1 + 1, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpch)
rs = RadioSetting("sl2PriorCh1", "List 2 priority channel 1", val)
rs.set_doc('List 2 priority channel 1: select the channel you want for priority ')
scanl.append(rs)

tmpch = list_def(_mem.sl2PriorCh2 + 1, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpch)
rs = RadioSetting("sl2PriorCh2", "List 2 priority channel 2", val)
rs.set_doc('List 2 priority channel 2: select the channel you want for priority ')
scanl.append(rs)

# ----------------- Basic settings

ch_list = []
for ch in range(1, 201):
ch_list.append("Channel M" + str(ch))
for bnd in range(1, 8):
ch_list.append("Band F" + str(bnd))
if _mem.BUILD_OPTIONS.ENABLE_NOAA:
for bnd in range(1, 11):
ch_list.append("NOAA N" + str(bnd))

tmpfreq0 = list_def(_mem.ScreenChannel_A, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpfreq0)
freq0_setting = RadioSetting("VFO_A_chn",
"VFO A current channel/band", val)
freq0_setting.set_doc('VFO A current channel/band: To select what is in the VFO A, ' + \
'*CHANNEL number 1-200, *BAND F1-F7, look in memory tab to view what ' + \
'is program their ')

tmpfreq1 = list_def(_mem.ScreenChannel_B, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpfreq1)
freq1_setting = RadioSetting("VFO_B_chn",
"VFO B current channel/band", val)
freq1_setting.set_doc('VFO B current channel/band: To select what is in the VFO B, ' + \
'*CHANNEL number 1-200, *BAND F1-F7, look in memory tab to view what ' + \
'is program their ')

tmptxvfo = list_def(_mem.TX_VFO, TX_VFO_LIST, 0)
val = RadioSettingValueList(TX_VFO_LIST, None, tmptxvfo)
tx_vfo_setting = RadioSetting("TX_VFO", "Main VFO", val)
tx_vfo_setting.set_doc('Main VFO: To select the frequency that is active in the radio, ' + \
'( A is on TOP, B is on the BOTTOM ) ')
val = RadioSettingValueBoolean(False)

def validate_upload_f4hwn(value):
return value

val.set_validate_callback(validate_upload_f4hwn)
Upload_f4hwn = RadioSetting("upload_f4hwn",
"Upload F4HWN setting to radio", val)
Upload_f4hwn.set_doc('Upload F4HWN: this section of feature is in a different range of memory. ' + \
'So it need to be upload to the radio separately, check this case to ' + \
'upload ONLY and ONLY all the section of F4HWN feature to the radio. ' + \
'It will be realy fast to upload, then the radio will reboot. ' + \
'After uploading, uncheck the case to be able to upload all other feature')
self.upload_f4hwn = val
# Set_Low_Power f4hwn
tmpsetlow = list_def(_mem.set_low, SET_LOW_LIST, 0)
val = RadioSettingValueList(SET_LOW_LIST, SET_LOW_LIST[tmpsetlow])
SetLowSetting = RadioSetting("set_low", "Set the power LOW level to specific power (SetLow)", val)
SetLowSetting.set_doc('SetLow: When the POWER TX is set to power Low ' + \
'(see tab memories in colon POWER to know the TX LEVEL for each channel), ' + \
'this Low will be at this power TX level ')
# Set_Ptt f4hwn
tmpsetptt = list_def(_mem.set_ptt, SET_PTT_LIST, 0)
val = RadioSettingValueList(SET_PTT_LIST, SET_PTT_LIST[tmpsetptt])
SetPttSetting = RadioSetting("set_ptt", "Ptt Mode, Set how react the ptt (SetPtt)", val)
SetPttSetting.set_doc('SetPtt: *CLASSIC: press = start transmission, release = stop transmission. ' + \
'*ONEPUSH: you no longer need to press the PTT continuously to transmit. ' + \
' Simply press once to start transmission, and press a second time to stop. ' + \
' No more finger cramps :) ')

# Set_tot f4hwn
tmpsettot = list_def(_mem.set_tot, SET_TOT_EOT_LIST, 0)
val = RadioSettingValueList(SET_TOT_EOT_LIST, SET_TOT_EOT_LIST[tmpsettot])
SetTotSetting = RadioSetting("set_tot", "Set TX timeout indicator (SetTot)", val)
SetTotSetting.set_doc('SetTot: to display the Set TX timeout indicator ')

# Set_eot f4hwn
tmpseteot = list_def(_mem.set_eot, SET_TOT_EOT_LIST, 0)
val = RadioSettingValueList(SET_TOT_EOT_LIST, SET_TOT_EOT_LIST[tmpseteot])
SetEotSetting = RadioSetting("set_eot", " Set End Of Transmission indicator (SetEot)", val)
SetEotSetting.set_doc('SetEot: to display the end of the Transmission ')

# Set_contrast f4hwn
tmpcontrast = min_max_def(_mem.set_contrast, 0, 15, 11)
val = RadioSettingValueInteger(0, 15, tmpcontrast)
contrastSetting = RadioSetting("set_contrast", "Set Contrast Level (SetCtr)", val)
contrastSetting.set_doc('SetCtr: to set contrast (0 to 15), default: 10 ')
# Set_inv f4hwn
tmpsetinv = list_def(_mem.set_inv, SET_OFF_ON_LIST, 0)
val = RadioSettingValueList(SET_OFF_ON_LIST, SET_OFF_ON_LIST[tmpsetinv])
SetInvSetting = RadioSetting("set_inv", "Set inverse lcd (SetInv)", val)
SetInvSetting.set_doc('SetInv: the texte display is black on white or texte white on black, default: black on white')

# Set_lck, uses
tmpsetlck = list_def(_mem.set_lck, SET_LCK_LIST, 0)
val = RadioSettingValueList(SET_LCK_LIST, SET_LCK_LIST[tmpsetlck])
SetLckSetting = RadioSetting("set_lck", "Lock the PTT when keypad is lock (SetLck)", val)
SetLckSetting.set_doc('SetLck: when keypad is lock, do you want to lock the ptt with it or not ')
# Set_met f4hwn
tmpsetmet = list_def(_mem.set_met, SET_MET_LIST, 0)
val = RadioSettingValueList(SET_MET_LIST, SET_MET_LIST[tmpsetmet])
SetMetSetting = RadioSetting("set_met", "Display the Smeter style (SetMet)", val)
SetMetSetting.set_doc('SetMet: change the style of the Smeter display, from CLASSIC to TINY ')

tmpsq = min_max_def(_mem.squelch, 0, 9, 1)
val = RadioSettingValueInteger(0, 9, tmpsq)
squelch_setting = RadioSetting("squelch", "Squelch (Sql)", val)
squelch_setting.set_doc('Sql: squelch sensitivity level 0 to 9, 0 = no restriction')
ch_list = []
for ch in range(1, 201):
ch_list.append("Channel M" + str(ch))

tmpc = list_def(_mem.call_channel, ch_list, 0)
val = RadioSettingValueList(ch_list, None, tmpc)
call_channel_setting = RadioSetting("call_channel",
"One key call channel (1 Call)",
val)
call_channel_setting.set_doc('1 Call: one key call channel, lets you quickly switch to the channel with 9 Call button ')

val = RadioSettingValueBoolean(_mem.key_lock)
keypad_lock_setting = RadioSetting("key_lock", "Keypad locked", val)
keypad_lock_setting.set_doc('Keypad locked: Activated the lock on the keypad now')
tmpval = list_def(_mem.auto_keypad_lock, AUTO_KEYPAD_LOCK_LIST, 1)
val = RadioSettingValueList(AUTO_KEYPAD_LOCK_LIST, None, tmpval)
auto_keypad_lock_setting = RadioSetting("auto_keypad_lock",
"Auto keypad lock after inactivity ~15sec (KeyLck)", val)
auto_keypad_lock_setting.set_doc('KeyLck: Keypad lock after inactivity ~15sec *OFF (no lock keypad), AUTO ')
tmptot = list_def(_mem.max_talk_time, TALK_TIME_LIST, 1)
val = RadioSettingValueList(TALK_TIME_LIST, None, tmptot)
tx_t_out_setting = RadioSetting("tot",
"Max talk, TX Time Out (TxTOut)", val)
tx_t_out_setting.set_doc('TxTOut: select the time limit max transmission ')

tmpbatsave = list_def(_mem.battery_save, BATSAVE_LIST, 4)
val = RadioSettingValueList(BATSAVE_LIST, None, tmpbatsave)
bat_save_setting = RadioSetting("battery_save",
"Battery save (BatSav)", val)
bat_save_setting.set_doc('BatSav: battery save option, a rate between active time and sleep time ')
val = RadioSettingValueBoolean(_mem.noaa_autoscan)
noaa_auto_scan_setting = RadioSetting("noaa_autoscan",
"NOAA Autoscan (NOAA-S)", val)
noaa_auto_scan_setting.set_doc('NOAA-S: ')
tmpmicgain = list_def(_mem.mic_gain, MIC_GAIN_LIST, 2)
val = RadioSettingValueList(MIC_GAIN_LIST, None, tmpmicgain)
mic_gain_setting = RadioSetting("mic_gain", "Mic Gain (Mic)", val)
mic_gain_setting.set_doc('Mic: Select the microphone sensitivity level ( Gain) ')
val = RadioSettingValueBoolean(_mem.mic_bar)
mic_bar_setting = RadioSetting("mic_bar",
"Microphone Bar display (MicBar)", val)
mic_bar_setting.set_doc('MicBar: Display microphone bar that appears while transmitting ')

tmpchdispmode = list_def(_mem.channel_display_mode,
CHANNELDISP_LIST, 0)
val = RadioSettingValueList(CHANNELDISP_LIST, None, tmpchdispmode)
ch_disp_setting = RadioSetting("channel_display_mode",
"Channel display mode (ChDisp)", val)
ch_disp_setting.set_doc('ChDisp: what to display on screen. *The frequency, *The channel number, *The name, *Then name plus the frequency ')

tmpdispmode = list_def(_mem.power_on_dispmode, WELCOME_LIST, 0)
val = RadioSettingValueList(WELCOME_LIST, None, tmpdispmode)
p_on_msg_setting = RadioSetting("welcome_mode",
"Power ON display message (POnMsg)",
val)
p_on_msg_setting.set_doc('POnMsg: ON power upof the radio, what do you want to display. *Full screen (black). *Your Message. *Voltage of the battery. *Nothing')

logo1 = str(_mem.logo_line1).strip("\x20\x00\xff") + "\x00"
logo1 = _getstring(logo1.encode('ascii', errors='ignore'), 0, 12)
val = RadioSettingValueString(0, 12, logo1)
logo1_setting = RadioSetting("logo1",
"Message line 1 ( MAX 12 characters ) ",
val)
logo1_setting.set_doc('Message line 1: The first line you can put your message, their is a maximum of 12 characters')

logo2 = str(_mem.logo_line2).strip("\x20\x00\xff") + "\x00"
logo2 = _getstring(logo2.encode('ascii', errors='ignore'), 0, 12)
val = RadioSettingValueString(0, 12, logo2)
logo2_setting = RadioSetting("logo2",
"Message line 2 ( MAX 12 characters )",
val)
logo2_setting.set_doc('Message line 2: The second line you can put your message, their is a maximum of 12 characters')

tmpbattxt = list_def(_mem.battery_text, BAT_TXT_LIST, 2)
val = RadioSettingValueList(BAT_TXT_LIST, None, tmpbattxt)
bat_txt_setting = RadioSetting("battery_text",
"Battery Level Display (BatTXT)", val)
bat_txt_setting.set_doc('BatTXT: Display additional battery value on the status bar in % or volts')

tmpback = list_def(_mem.backlight_time, BACKLIGHT_LIST, 0)
val = RadioSettingValueList(BACKLIGHT_LIST, None, tmpback)
back_lt_setting = RadioSetting("backlight_time",
"Backlight time (BackLt)", val)
back_lt_setting.set_doc('BackLt: backlight duration, how long the backlight will stay ON after a action end')

tmpback = list_def(_mem.backlight_min, BACKLIGHT_LVL_LIST, 0)
val = RadioSettingValueList(BACKLIGHT_LVL_LIST, None, tmpback)
bl_min_setting = RadioSetting("backlight_min",
"Backlight level min (BLMin)", val)
bl_min_setting.set_doc('BLMin: minimal backlight brightness, when the screen backlight turns OFF it will go dim to this value')

tmpback = list_def(_mem.backlight_max, BACKLIGHT_LVL_LIST, 10)
val = RadioSettingValueList(BACKLIGHT_LVL_LIST, None, tmpback)
bl_max_setting = RadioSetting("backlight_max",
"Backlight level max (BLMax)", val)
bl_max_setting.set_doc('BLMax: maximal backlight brightness, when the screen backlight turns ON it will turn bright to this value')
tmpback = list_def(_mem.backlight_on_TX_RX, BACKLIGHT_TX_RX_LIST, 0)
val = RadioSettingValueList(BACKLIGHT_TX_RX_LIST, None, tmpback)
blt_trx_setting = RadioSetting("backlight_on_TX_RX",
"Backlight on TX/RX (BltTRX)", val)
blt_trx_setting.set_doc('BltTRX: backlight activation on TX or RX or both TX and RX or no backlight')
val = RadioSettingValueBoolean(_mem.button_beep)
beep_setting = RadioSetting("button_beep",
"Key press beep sound (Beep)", val)
beep_setting.set_doc('Beep: keypad press beep sound')

tmpalarmmode = list_def(_mem.roger_beep, ROGER_LIST, 0)
val = RadioSettingValueList(ROGER_LIST, None, tmpalarmmode)
roger_setting = RadioSetting("roger_beep",
"End of transmission beep (Roger)", val)
roger_setting.set_doc('Roger: squelch tail eliminator, eliminates noise at the end of a transmission')

val = RadioSettingValueBoolean(_mem.ste)
ste_setting = RadioSetting("ste", "Squelch tail elimination (STE)", val)
ste_setting.set_doc('STE: squelch tail eliminator, eliminates noise at the end of a transmission')

tmprte = list_def(_mem.rp_ste, RTE_LIST, 0)
val = RadioSettingValueList(RTE_LIST, None, tmprte)
rp_ste_setting = \
RadioSetting("rp_ste",
"Repeater squelch tail elimination (RP STE)", val)
rp_ste_setting.set_doc('RP STE: repeater squelch tail eliminator')

val = RadioSettingValueBoolean(_mem.AM_fix)
am_fix_setting = RadioSetting("AM_fix",
"AM reception fix (AM Fix)", val)
am_fix_setting.set_doc('AM Fix: activates autogain AM fix function')

tmpvox = min_max_def((_mem.vox_level + 1) * _mem.vox_switch, 0, 10, 0)
val = RadioSettingValueList(VOX_LIST, None, tmpvox)
vox_setting = RadioSetting("vox", "Voice-operated switch (VOX)", val)
vox_setting.set_doc('VOX: voice TX activation sensitivity level VOX Setting ')
tmprxmode = list_def((bool(_mem.crossband) << 1)
+ bool(_mem.dual_watch),
RXMODE_LIST, 0)
val = RadioSettingValueList(RXMODE_LIST, None, tmprxmode)
rx_mode_setting = RadioSetting("rx_mode", "RX Mode (RxMode)", val)
rx_mode_setting.set_doc('RxMode: *MAIN ONLY: transmits and listens on the main frequency. *DUAL RX RESPOND: ' + \
'listens both frequencies, if signal received on the secondary frequency, it locks to ' + \
'it for a couple of seconds so you can respond to the call (DWR). *CROSS BAND: always ' + \
'transmits on the primary and listens on the secondary frequency (XB). *MAIN TX DUAL RX:' + \
'always transmits on the primary, listens to both (DW).')

val = RadioSettingValueBoolean(_mem.freq_mode_allowed)
freq_mode_allowed_setting = RadioSetting("freq_mode_allowed",
"Frequency mode allowed", val)
freq_mode_allowed_setting.set_doc('Frequency mode allowed ')

tmpscanres = list_def(_mem.scan_resume_mode, SCANRESUME_LIST, 0)
val = RadioSettingValueList(SCANRESUME_LIST, None, tmpscanres)
scn_rev_setting = RadioSetting("scan_resume_mode",
"Scan resume mode (ScnRev)", val)
scn_rev_setting.set_doc('ScnRev: scan resume mode *CARRIER - resume scan after signal disappears. ' + \
'*TIMEOUT - resume scan after 5 seconds pause. *STOP - after receiving a signal, stop the scan')
tmpvoice = list_def(_mem.voice, VOICE_LIST, 0)
val = RadioSettingValueList(VOICE_LIST, None, tmpvoice)
voice_setting = RadioSetting("voice", "Voice", val)

tmpalarmmode = list_def(_mem.alarm_mode, ALARMMODE_LIST, 0)
val = RadioSettingValueList(ALARMMODE_LIST, None, tmpalarmmode)
alarm_setting = RadioSetting("alarm_mode", "Alarm mode", val)

# ----------------- Extra settings

# S-meter
tmp_s0 = -int(_mem.s0_level)
tmp_s9 = -int(_mem.s9_level)

if tmp_s0 not in range(-200, -91) or tmp_s9 not in range(-160, -51) \
or tmp_s9 < tmp_s0+9:

tmp_s0 = -130
tmp_s9 = -76
val = RadioSettingValueInteger(-200, -90, tmp_s0)
s0_level_setting = RadioSetting("s0_level",
"S-meter S0 level [dBm]", val)
s0_level_setting.set_doc('S-meter S0 level [dBm]: To set the level calibration for S0 ')

val = RadioSettingValueInteger(-160, -50, tmp_s9)
s9_level_setting = RadioSetting("s9_level",
"S-meter S9 level [dBm]", val)
s9_level_setting.set_doc('S-meter S9 level [dBm]: To set the level calibration for S9 ')

# Battery Type
tmpbtype = list_def(_mem.Battery_type, BATTYPE_LIST, 0)
val = RadioSettingValueList(BATTYPE_LIST, BATTYPE_LIST[tmpbtype])
bat_type_setting = RadioSetting("Battery_type",
"Battery Type (BatTyp)", val)
bat_type_setting.set_doc('BatTyp: What type of battery the radio is using, this affect the level value of the battery in the display')

# Power on password
# def validate_password(value):
# value = value.strip(" ")
# if value.isdigit():
# return value.zfill(6)
# if value != "":
# raise InvalidValueError("Power on password "
# "can only have digits")
# return ""

# pswd_str = str(int(_mem.password)).zfill(6) \
# if _mem.password < 1000000 else ""
# val = RadioSettingValueString(0, 6, pswd_str)
# val.set_validate_callback(validate_password)
# pswd_setting = RadioSetting("password", "Power on password", val)

# ----------------- FM radio

append_label(fmradio, "Channel Memory Radio (MR)", "Frequency [MHz]")

for i in range(1, 21):
fmfreq = _mem.fmfreq[i-1]/10.0
freq_name = str(fmfreq)
if fmfreq < FMMIN or fmfreq > FMMAX:
freq_name = ""
rs = RadioSetting("FM_" + str(i), "Ch " + str(i),
RadioSettingValueString(0, 5, freq_name))
rs.set_doc('Radio Frequency: Enter the radio frequency in your area in MHZ, example: 96.9 ' + \
'To listen the FM radio, Long press on the 5 key, then if you want to scan FM radio ' + \
'Station near you, press the *. but scan will erase the existing FM radio list ')
fmradio.append(rs)

# ----------------- Unlock settings

# F-LOCK
def validate_int_flock(value):
mem_val = self._memobj.int_flock
if mem_val != 7 and value == FLOCK_LIST[7]:
msg = "\"" + value + "\" can only be enabled from radio menu"
raise InvalidValueError(msg)
return value

tmpflock = list_def(_mem.int_flock, FLOCK_LIST, 0)
val = RadioSettingValueList(FLOCK_LIST, None, tmpflock)
val.set_validate_callback(validate_int_flock)
f_lock_setting = RadioSetting("int_flock",
"TX Frequency Lock (F Lock)", val)
f_lock_setting.set_doc('F Lock: Sets the TX frequency band plan ')

val = RadioSettingValueBoolean(_mem.int_200tx)
tx200_setting = RadioSetting("int_200tx",
"Unlock 174-350MHz TX (Tx 200)", val)
tx200_setting.set_doc('Enables transmission on 200MHz ')

val = RadioSettingValueBoolean(_mem.int_350tx)
tx350_setting = RadioSetting("int_350tx",
"Unlock 350-400MHz TX (Tx 350)", val)
tx350_setting.set_doc('Enables transmission on 350MHz ')
val = RadioSettingValueBoolean(_mem.int_500tx)
tx500_setting = RadioSetting("int_500tx",
"Unlock 500-600MHz TX (Tx 500)", val)
tx500_setting.set_doc('Enables transmission on 500MHz ')
val = RadioSettingValueBoolean(_mem.int_350en)
en350_setting = RadioSetting("int_350en",
"Unlock 350-400MHz RX (350 En)", val)
en350_setting.set_doc('Enables reception on 350MHz ')
val = RadioSettingValueBoolean(_mem.int_scren)
en_scrambler_setting = RadioSetting("int_scren",
"Scrambler enabled (ScraEn)", val)
en_scrambler_setting.set_doc('Enables Scrambler ')
# ----------------- Driver Info

if self.FIRMWARE_VERSION == "":
firmware = "To get the firmware version please download" \
"the image from the radio first"
else:
firmware = self.FIRMWARE_VERSION

append_label(roinfo,
"=" * 6 + " Firmware F4HWN " + "=" * 300, "=" * 300)

append_label(roinfo, "Firmware Version", firmware)
val = RadioSettingValueString(0,75,FIRMWARE_DRIVER_VERSION_UPDATE)
rs = RadioSetting("Update","Latest Firmware F4HWN" + ", copy link:(CTRL-C), paste:(CTRL-V) to your browser -> ", val)
rs.set_doc('Be sure you have the latest firmware available')
roinfo.append(rs)
append_label(roinfo,
"=" * 6 + " Chirp Driver F4HWN " + "=" * 300, "=" * 300)
append_label(roinfo, "Driver Chirp Version", DRIVER_VERSION)
val = RadioSettingValueString(0,75,CHIRP_DRIVER_VERSION_UPDATE)
rs = RadioSetting("Update1","Latest Driver " + self.MODEL + ", copy link:(CTRL-C), paste:(CTRL-V) to your browser -> ", val)
rs.set_doc('Be sure you have the latest chirp driver available')
roinfo.append(rs)
# ----------------- Calibration

val = RadioSettingValueBoolean(False)

def validate_upload_calibration(value):
if value and not self.upload_calibration:
msg = "This option may brake your radio!!!\n" \
"You are doing this at your own risk.\n" \
"Make sure you have a working calibration backup.\n" \
"Don't use it unless you know what you're doing."
ret = wx.MessageBox(msg, "Warning", wx.OK | wx.CANCEL |
wx.CANCEL_DEFAULT | wx.ICON_WARNING)
value = ret == wx.OK
self.upload_calibration = value
return value

val.set_validate_callback(validate_upload_calibration)
radio_setting = RadioSetting("upload_calibration",
"Upload calibration", val)
radio_setting.set_doc('To Upload to the radio only the setting in the calibration section, you need to check the case, then upload to the radio')
calibration.append(radio_setting)

radio_setting_group = RadioSettingGroup("squelch_calibration",
"Squelch")
calibration.append(radio_setting_group)

bands = {"sqlBand1_3": "Frequency Band 1-3",
"sqlBand4_7": "Frequency Band 4-7"}
for bnd, bndn in bands.items():
append_label(radio_setting_group,
"=" * 6 + " " + bndn + " " + "=" * 300, "=" * 300)
for sql in range(0, 10):
prefix = "_mem.cal." + bnd + "."
postfix = "[" + str(sql) + "]"
append_label(radio_setting_group, "Squelch " + str(sql))

name = prefix + "openRssiThr" + postfix
tempval = min_max_def(eval(name), 0, 255, 0)
val = RadioSettingValueInteger(0, 255, tempval)
radio_setting = RadioSetting(name, "RSSI threshold open", val)
radio_setting_group.append(radio_setting)

name = prefix + "closeRssiThr" + postfix
tempval = min_max_def(eval(name), 0, 255, 0)
val = RadioSettingValueInteger(0, 255, tempval)
radio_setting = RadioSetting(name, "RSSI threshold close", val)
radio_setting_group.append(radio_setting)

name = prefix + "openNoiseThr" + postfix
tempval = min_max_def(eval(name), 0, 127, 0)
val = RadioSettingValueInteger(0, 127, tempval)
radio_setting = RadioSetting(name, "Noise threshold open", val)
radio_setting_group.append(radio_setting)

name = prefix + "closeNoiseThr" + postfix
tempval = min_max_def(eval(name), 0, 127, 0)
val = RadioSettingValueInteger(0, 127, tempval)
radio_setting = RadioSetting(name, "Noise threshold close",
val)
radio_setting_group.append(radio_setting)

name = prefix + "openGlitchThr" + postfix
tempval = min_max_def(eval(name), 0, 255, 0)
val = RadioSettingValueInteger(0, 255, tempval)
radio_setting = RadioSetting(name, "Glitch threshold open",
val)
radio_setting_group.append(radio_setting)

name = prefix + "closeGlitchThr" + postfix
tempval = min_max_def(eval(name), 0, 255, 0)
val = RadioSettingValueInteger(0, 255, tempval)
radio_setting = RadioSetting(name, "Glitch threshold close",
val)
radio_setting_group.append(radio_setting)

radio_setting_group = RadioSettingGroup("rssi_level_calibration",
"RSSI levels")
calibration.append(radio_setting_group)

bands = {"rssiLevelsBands1_2": "1-2 ", "rssiLevelsBands3_7": "3-7 "}
for bnd, bndn in bands.items():
append_label(radio_setting_group,
"=" * 6 +
" RSSI levels for QS original small bar graph, bands "
+ bndn + "=" * 300, "=" * 300)
for lvl in [1, 2, 4, 6]:
name = "_mem.cal." + bnd + ".level" + str(lvl)
tempval = min_max_def(eval(name), 0, 65535, 0)
val = RadioSettingValueInteger(0, 65535, tempval)
radio_setting = RadioSetting(name, "Level " + str(lvl), val)
radio_setting_group.append(radio_setting)

#

radio_setting_group = RadioSettingGroup("tx_power_calibration",
"TX power")
calibration.append(radio_setting_group)

for bnd in range(0, 7):
append_label(radio_setting_group, "=" * 6 + " TX power band "
+ str(bnd+1) + " " + "=" * 300, "=" * 300)
powers = {"low": "Low", "mid": "Medium", "hi": "High"}
for pwr, pwrn in powers.items():
append_label(radio_setting_group, pwrn)
bounds = ["lower", "center", "upper"]
for bound in bounds:
name = f"_mem.cal.txp[{bnd}].{pwr}.{bound}"
tempval = min_max_def(eval(name), 0, 255, 0)
val = RadioSettingValueInteger(0, 255, tempval)
radio_setting = RadioSetting(name, bound.capitalize(), val)
radio_setting_group.append(radio_setting)

#

radio_setting_group = RadioSettingGroup("battery_calibration",
"Battery")
calibration.append(radio_setting_group)

for lvl in range(0, 6):
name = "_mem.cal.batLvl[" + str(lvl) + "]"
temp_val = min_max_def(eval(name), 0, 4999, 4999)
val = RadioSettingValueInteger(0, 4999, temp_val)
radio_setting = \
RadioSetting(name, "Level " + str(lvl) +
(" (voltage calibration)" if lvl == 3 else ""),
val)
radio_setting_group.append(radio_setting)

radio_setting_group = RadioSettingGroup("vox_calibration", "VOX")
calibration.append(radio_setting_group)

for lvl in range(0, 10):
append_label(radio_setting_group, "Level " + str(lvl + 1))

name = "_mem.cal.vox1Thr[" + str(lvl) + "]"
val = RadioSettingValueInteger(0, 65535, eval(name))
radio_setting = RadioSetting(name, "On", val)
radio_setting_group.append(radio_setting)

name = "_mem.cal.vox0Thr[" + str(lvl) + "]"
val = RadioSettingValueInteger(0, 65535, eval(name))
radio_setting = RadioSetting(name, "Off", val)
radio_setting_group.append(radio_setting)

radio_setting_group = RadioSettingGroup("mic_calibration",
"Microphone sensitivity")
calibration.append(radio_setting_group)

for lvl in range(0, 5):
name = "_mem.cal.micLevel[" + str(lvl) + "]"
tempval = min_max_def(eval(name), 0, 31, 31)
val = RadioSettingValueInteger(0, 31, tempval)
radio_setting = RadioSetting(name, "Level " + str(lvl), val)
radio_setting_group.append(radio_setting)

radio_setting_group = RadioSettingGroup("other_calibration", "Other")
calibration.append(radio_setting_group)

name = "_mem.cal.xtalFreqLow"
temp_val = min_max_def(eval(name), -1000, 1000, 0)
val = RadioSettingValueInteger(-1000, 1000, temp_val)
radio_setting = RadioSetting(name, "Xtal frequency low", val)
radio_setting_group.append(radio_setting)

name = "_mem.cal.volumeGain"
temp_val = min_max_def(eval(name), 0, 63, 58)
val = RadioSettingValueInteger(0, 63, temp_val)
radio_setting = RadioSetting(name, "Volume gain", val)
radio_setting_group.append(radio_setting)

name = "_mem.cal.dacGain"
temp_val = min_max_def(eval(name), 0, 15, 8)
val = RadioSettingValueInteger(0, 15, temp_val)
radio_setting = RadioSetting(name, "DAC gain", val)
radio_setting_group.append(radio_setting)

# -------- LAYOUT
append_label(basic,
"=" * 6 + " F4HWN, Begin Setting, if this area need to be upload select the upload F4HWN" + "=" * 300, "=" * 300)
basic.append(Upload_f4hwn)
basic.append(SetLowSetting)
basic.append(SetPttSetting)
basic.append(SetTotSetting)
basic.append(SetEotSetting)
basic.append(contrastSetting)
basic.append(SetInvSetting)
basic.append(SetLckSetting)
basic.append(SetMetSetting)
append_label(basic,
"=" * 6 + " F4HWN, End Setting " + "=" * 300, "=" * 300)

append_label(basic,
"=" * 6 + " General settings " + "=" * 300, "=" * 300)

basic.append(squelch_setting)
basic.append(rx_mode_setting)
basic.append(call_channel_setting)
basic.append(auto_keypad_lock_setting)
basic.append(tx_t_out_setting)
basic.append(bat_save_setting)
basic.append(scn_rev_setting)
if _mem.BUILD_OPTIONS.ENABLE_NOAA:
basic.append(noaa_auto_scan_setting)
if _mem.BUILD_OPTIONS.ENABLE_AM_FIX:
basic.append(am_fix_setting)

append_label(basic,
"=" * 6 + " Display settings " + "=" * 300, "=" * 300)

basic.append(bat_txt_setting)
basic.append(mic_bar_setting)
basic.append(ch_disp_setting)
basic.append(p_on_msg_setting)
basic.append(logo1_setting)
basic.append(logo2_setting)

append_label(basic, "=" * 6 + " Backlight settings "
+ "=" * 300, "=" * 300)

basic.append(back_lt_setting)
basic.append(bl_min_setting)
basic.append(bl_max_setting)
basic.append(blt_trx_setting)

append_label(basic, "=" * 6 + " Audio related settings "
+ "=" * 300, "=" * 300)

if _mem.BUILD_OPTIONS.ENABLE_VOX:
basic.append(vox_setting)
basic.append(mic_gain_setting)
basic.append(beep_setting)
basic.append(roger_setting)
basic.append(ste_setting)
basic.append(rp_ste_setting)
if _mem.BUILD_OPTIONS.ENABLE_VOICE:
basic.append(voice_setting)
if _mem.BUILD_OPTIONS.ENABLE_ALARM:
basic.append(alarm_setting)

append_label(basic, "=" * 6 + " Radio state " + "=" * 300, "=" * 300)

basic.append(freq0_setting)
basic.append(freq1_setting)
basic.append(tx_vfo_setting)
basic.append(keypad_lock_setting)

advanced.append(freq_mode_allowed_setting)
advanced.append(bat_type_setting)
advanced.append(s0_level_setting)
advanced.append(s9_level_setting)
# if _mem.BUILD_OPTIONS.ENABLE_PWRON_PASSWORD:
# advanced.append(pswd_setting)

if _mem.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
dtmf.append(sep_code_setting)
dtmf.append(group_code_setting)
dtmf.append(first_code_per_setting)
dtmf.append(spec_per_setting)
dtmf.append(code_per_setting)
dtmf.append(code_int_setting)
if _mem.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
dtmf.append(ani_id_setting)
dtmf.append(up_code_setting)
dtmf.append(dw_code_setting)
dtmf.append(d_prel_setting)
dtmf.append(dtmf_side_tone_setting)
if _mem.BUILD_OPTIONS.ENABLE_DTMF_CALLING:
dtmf.append(dtmf_resp_setting)
dtmf.append(d_hold_setting)
dtmf.append(d_live_setting)
dtmf.append(perm_kill_setting)
dtmf.append(kill_code_setting)
dtmf.append(rev_code_setting)
dtmf.append(killed_setting)

unlock.append(f_lock_setting)
unlock.append(tx200_setting)
unlock.append(tx350_setting)
unlock.append(tx500_setting)
unlock.append(en350_setting)
# desable by f4hwn
# unlock.append(en_scrambler_setting)

return top

def set_memory(self, memory):
"""
Store details about a high-level memory to the memory map
This is called when a user edits a memory in the UI
"""
number = memory.number-1
att_num = number if number < 200 else 200 + int((number - 200) / 2)

# Get a low-level memory object mapped to the image
_mem_chan = self._memobj.channel[number]
_mem_attr = self._memobj.ch_attr[att_num]

_mem_attr.is_scanlist1 = 0
_mem_attr.is_scanlist2 = 0
_mem_attr.compander = 0
_mem_attr.is_free = 1
_mem_attr.band = 0x7

# empty memory
if memory.empty:
_mem_chan.set_raw("\xFF" * 16)
if number < 200:
_mem_chname = self._memobj.channelname[number]
_mem_chname.set_raw("\xFF" * 16)
return memory

# find band
band = self._find_band(memory.freq)

# mode
tmp_mode = self.get_features().valid_modes.index(memory.mode)
_mem_chan.modulation = tmp_mode / 2
_mem_chan.bandwidth = tmp_mode % 2
if memory.mode == "USB":
_mem_chan.bandwidth = 1 # narrow

# frequency/offset
_mem_chan.freq = memory.freq/10
_mem_chan.offset = memory.offset/10

if memory.duplex == "":
_mem_chan.offset = 0
_mem_chan.offsetDir = 0
elif memory.duplex == '-':
_mem_chan.offsetDir = FLAGS1_OFFSET_MINUS
elif memory.duplex == '+':
_mem_chan.offsetDir = FLAGS1_OFFSET_PLUS
elif memory.duplex == 'off':
# we fake tx disable by setting the tx freq to 0 MHz
_mem_chan.offsetDir = FLAGS1_OFFSET_MINUS
_mem_chan.offset = _mem_chan.freq
# set band

_mem_attr.is_free = 0
_mem_attr.band = band

# channels >200 are the 14 VFO chanells and don't have names
if number < 200:
_mem_chname = self._memobj.channelname[number]
tag = memory.name.ljust(10) + "\x00"*6
_mem_chname.name = tag # Store the alpha tag

# tone data
self._set_tone(memory, _mem_chan)

# step
_mem_chan.step = STEPS.index(memory.tuning_step)

# tx power
if str(memory.power) == str(UVK5_POWER_LEVELS[2]):
_mem_chan.txpower = POWER_HIGH
elif str(memory.power) == str(UVK5_POWER_LEVELS[1]):
_mem_chan.txpower = POWER_MEDIUM
else:
_mem_chan.txpower = POWER_LOW

# -------- EXTRA SETTINGS

def get_setting(name, def_val):
if name in memory.extra:
return int(memory.extra[name].value)
return def_val

_mem_chan.busyChLockout = get_setting("busyChLockout", False)
_mem_chan.dtmf_pttid = get_setting("pttid", 0)
_mem_chan.freq_reverse = get_setting("frev", False)
_mem_chan.dtmf_decode = get_setting("dtmfdecode", False)
_mem_chan.scrambler = get_setting("scrambler", 0)
_mem_attr.compander = get_setting("compander", 0)
if number < 200:
tmp_val = get_setting("scanlists", 0)
_mem_attr.is_scanlist1 = bool(tmp_val & 1)
_mem_attr.is_scanlist2 = bool(tmp_val & 2)

return memory
    (1-1/1)